Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.
\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2
Bài 1:
Ta thấy:
\(\Delta=(m+1)^2-4(m-\frac{1}{3})=m^2-2m+1+\frac{4}{3}=(m-1)^2+\frac{4}{3}>0, \forall m\)
Do đó pt luôn có nghiệm với mọi $m$
Bài 2:
\(\Delta'=(m-1)^2-(m-3)=m^2-3m+4=(m-\frac{3}{2})^2+\frac{7}{4}>0, \forall m\)
Do đó pt luôn có nghiệm với mọi $m$
Bài 3:
- Nếu $m-1=0$ thì PT trở thành:
$x+1=0\Rightarrow x=-1$ là nghiệm của pt
- Nếu $m-1\neq 0$. Pt là pt bậc 2 ẩn $x$
Ta thấy: \(\Delta=(3m-2)^2-4(m-1)(3-2m)=17m^2-32m+16=m^2+16(m-1)^2\geq 0, \forall m\)
Do đó nếu $m-1\neq 0$ thì pt luôn có nghiệm.
Tóm lại pt luôn có nghiệm với mọi $m$