Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a;b > 0 ta có:
\(\sqrt{a}+\sqrt{b}\le\dfrac{b}{\sqrt{a}}+\dfrac{a}{\sqrt{b}}\\ \Leftrightarrow\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\le\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\\ \Leftrightarrow a\sqrt{b}+b\sqrt{a}\le a\sqrt{a}+b\sqrt{b}\\ \Leftrightarrow a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{a}\ge0\\ \Leftrightarrow a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)\ge0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)\ge0\)
Bất đẳng thức cuối cùng luôn đúng vì: \(\left\{{}\begin{matrix}\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\\\sqrt{a}+\sqrt{b}>0\left(a;b>0\right)\end{matrix}\right.\)
Vậy bất đẳng thức được chứng minh với a;b >0
ta có :\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\left(a>0;b>0\right)\)
\(\Leftrightarrow a+b=a+b-2+2\sqrt{\left(a-1\right)\left(b-1\right)}\)
\(\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\)
\(\Leftrightarrow ab-a-b+1=1\Leftrightarrow ab-a-b=0\)(1)
ta lại có :\(\frac{1}{a}+\frac{1}{b}=1\Leftrightarrow\frac{a+b}{ab}=1\Leftrightarrow ab=a+b\left(2\right)\)
từ (1) và (2) \(\Leftrightarrow a+b-a-b=0\Leftrightarrow0=0\)(luôn đúng)
=> đpcm
\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)
\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)
\(A=\dfrac{x+\sqrt{x}+10+\sqrt{x}+3}{x-9}=\dfrac{x+2\sqrt{x}+13}{x-9}\)
Để A>B thì A-B>0
=>\(\dfrac{x+2\sqrt{x}+13}{x-9}-\sqrt{x}-1>0\)
=>\(\dfrac{x+2\sqrt{x}+13-\left(x-9\right)\left(\sqrt{x}+1\right)}{x-9}>0\)
=>\(\dfrac{x+2\sqrt{x}+13-x\sqrt{x}-x+9\sqrt{x}+9}{x-9}>0\)
=>\(\dfrac{-x\sqrt{x}+11\sqrt{x}+22}{x-9}>0\)
TH1: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22>0\\x-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< 4.05\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16.4025\)
TH2: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22< 0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>4.05\\0< x< 9\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
xin đính chính là a lớn hơn hoặc bằng b và lớn hớn hoặc bằng 0 nha
\(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)
\(\Leftrightarrow\)\(a-b\ge a+b-2\sqrt{ab}\)
\(\Leftrightarrow\)\(-2b\ge-2\sqrt{ab}\)
\(\Leftrightarrow\)\(b\le\sqrt{ab}\)
Lại có: \(a\ge b\)\(\Rightarrow\)\(b=\sqrt{b}.\sqrt{b}\le\sqrt{a}.\sqrt{b}=\sqrt{ab}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}a=b\\b=0\end{cases}}\)
Giới thiệu luôn bđt tương tự nhé:
Với mọi số thực a1, a2, a3, ... , an không âm ta luôn có :
\(\sqrt{a_1+a_2+a_3+...+a_n}\ge\sqrt{a_1}+\sqrt{a_2}+\sqrt{a_3}+...+\sqrt{a_n}\)
Dấu "=" xảy ra khi n-1 số trong n số trên bằng 0