\(\sqrt{2}\) là số vô tỉ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

undefined

6 tháng 4 2019

cho \(\sqrt{2}\) là số vô tỉ, khi đó \(\sqrt{2}=\frac{m}{n}\)

\(\Rightarrow\)2=\(\frac{m^2}{n^2}\)

\(\Rightarrow\)2\(n^2=m^2\)

\(\Rightarrow\)\(m^2⋮n^2\Leftrightarrow m⋮n\)

\(\Rightarrow\)giả sử là vô lý

\(\Rightarrow\)\(\sqrt{2}\)là số vô tỉ

17 tháng 10 2017

Lời giải

Giả sử: \(\sqrt{2}\)\(\sqrt{3}\) là các số hữu tỉ

Khi đó: \(\left\{{}\begin{matrix}\sqrt{2}=\dfrac{a}{b}\\\sqrt{3}=\dfrac{x}{y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a^2}{b^2}=2\\\dfrac{x^2}{y^2}=3\end{matrix}\right.\)

Khi đó:

\(\left\{{}\begin{matrix}a^2=2b^2\\x^2=3y^2\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}a^2⋮2\\x^2⋮3\end{matrix}\right.\)

Như vậy \(\left\{{}\begin{matrix}b^2⋮2\\y^2⋮3\end{matrix}\right.\) để có thể thỏa mãn điều kiện trên

Vậy \(\sqrt{2}\)\(\sqrt{3}\) là số vô tỉ

a, mệnh đề đúng 

b, mệnh đề sai 

c, mệnh đề đúng 

8 tháng 5 2017

a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.

8 tháng 5 2017

b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.

26 tháng 2 2022

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

8 tháng 4 2017

a) Gọi D là điều kiện xác định của biểu thức vế trái D = [- 8; +∞]. Vế trái dương với mọi x ∈ D trong khi vế phải là số âm. Mệnh đề sai với mọi x ∈ D. Vậy bất phương trình vô nghiệm.

b) Vế trái có ≥ 1 ∀x ∈ R,

≥ 1 ∀x ∈ R

=> + ≥ 2 ∀x ∈ R.

Mệnh đề sai ∀x ∈ R. Bất phương trình vô nghiệm.

c) ĐKXĐ: D = [- 1; 1]. Vế trái âm với mọi x ∈ D trong khi vế phải dương.