Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(2^{4n+2}=4^{2n+1}=\left(5-1\right)^{2n+1}\overline{=}-1\left(mod5\right)\)
\(\Rightarrow2^{4n+2}+1\overline{=}\left(-1\right)+1=0\left(mod5\right)\)
Hay \(2^{4n+2}+1⋮5\) (đpcm)
34n + 1 + 2 = 34n.3 + 2 = (34)n.3 + 2 = (...1)n.3 + 2 = (...1).3 + 2 = (...3) +2 = (....5)
Vì 34n + 1 + 2 có chữ số tận cùng là 5 nên 34n +1 + 2 \(⋮\)5
Ta có: \(3^{4n+1}+2=3^{4n}.3+2\)mà \(3^{4n}\) có chữ số tận cùng là 1
=> \(3^{4n}.3+2=\left(...1\right).3+2\)
\(=\left(...5\right)⋮5\forall n\in N\)
Ta có : 3^4n+1 + 2 => (....3) + 2
=> (.....5) chia hết cho 5
mình nhá ^^
Ta có : \(7^{4n}-1=\left(7^4\right)^n-1=2401^n-1\)
Ta thấy 2401 tận cùng bằng 1 nên \(2401^n\)tận cùng bằng 1 nên \(2401^n-1\)tận cùng bằng 0 suy ra chia hết cho 5 nên \(7^{4n}-1\)chia hết cho 5
Vậy .......
ok , tiện thì kb :v
Ta có : 24n = (24)n = 16n = \(\overline{...6}\)
=> 24n+1 = 16n.2 = \(\overline{...2}\)
=> 24n+1 + 3 = \(\overline{...5}⋮5\)
=> đpcm
@Nguyệt Hàn Tuyết
n+5 chia hết n+1
=> (n+1)+4 chia hết n+1
Mà n+1 chia hết n+1
=> 4 chia hết n+1
=> n+1 thuộc Ư(4)={1;2;4;-1;-2;-4}
=> n thuộc { 0;1;3;-2;-3;-5}
ta có : \(\left(5n+7\right)\left(4n+6\right)=20n^2+30n+28n+42\)
\(=20n^2+58n+42=2\left(10n^2+29n+21\right)⋮2\) với mọi \(n\in N\)
vậy \(\left(5n+7\right)\left(4n+6\right)⋮2với\forall n\in N\)
Ta có:24n+2+1
=(24)n x 4+1
=16n x 4+1
=(.....6)x 4+1
=(......4)+1=(.....5)
Vì 24n+2có chữ số tận cùng là 5 nên 24n+2chia hết cho 5 với mọi n