\(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

A=n[n2(n27)236]=n[(n37n)236]�=�[�2(�2−7)2−36]=�[(�3−7�)2−36]

=n(n37n6)(n37n+6)=�(�3−7�−6)(�3−7�+6)

=n(n3)(n+1)(n+2)(n2)(n1)(n+3)=�(�−3)(�+1)(�+2)(�−2)(�−1)(�+3)

A⇒� là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7

25 tháng 7 2023

18 tháng 9 2018

d) ( n + 7 )2 - ( n - 5 )2

= n2 + 14n + 49 - n2 + 10n - 25

= 24n + 24

= 24 ( n + 1 ) chia hết cho 24 ( đpcm )

18 tháng 9 2018

e) 

( 7n + 5 )2 - 25

= ( 7n + 5 )2 - 52

= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )

= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )

4 tháng 9 2019

a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)

b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)

\(=n\left(n-1\right)\left(n-2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)

 
4 tháng 9 2019

a,25^n.24

mà 25^n :5

1 tháng 6 2018

b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7

Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]

= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )

Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )

 n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )

Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )

Ta thấy A là tích của 7 số nguyên liên tiếp nên :

- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )

- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )

- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )

- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

17 tháng 5 2017

Đặt \(n^3\left(n^2-7\right)^2-36n=A\)

Ta có :

\(n^3\left(n^2-7\right)^2-36n\)

\(=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(=n.\left[\left(n^3-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-2\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Ta có \(A⋮3;5;7\) ( vì có \(\left(n-3\right)\left(n-2\right)\left(n-2\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là 7 số tự nhiên liên tiếp )

Mà 3; 5; 7 là đôi một nguyen tố cùng nhau

\(\Rightarrow A⋮3.5.7\Rightarrow A⋮105\)

17 tháng 5 2017

Very easy!!! Bạn chỉ cần phân tích đa thức thành nhân tử là ok

Ta có: n3.(n2-7)2 -36n = \(n^3.\left(n^4-14n^2+49\right)-36n\)

= \(n^7-14n^5+49n^3-36n\)

= \(n^7+12n^5+36n^3-25n^5-n^5-12n^3-36n+25n^3\)

= \(n^3\left(n^4+12n^2+36-25n^2\right)-n\left(n^4+12n^2+36-25n^2\right)\)

= \(\left(n^3-n\right)\left(n^4+12n^2+36-25n^2\right)\)

= \(n\left(n^1-1\right)\left[\left(n^4+12n^2+36\right)-25n^2\right]\)

= \(n\left(n-1\right)\left(n+1\right)\left[\left(n^2+6\right)^2-\left(5n\right)^2\right]\)

= \(n\left(n-1\right)\left(n+1\right)\left(n^2-5n+6\right)\left(n^2+5n+6\right)\)

= \(n\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\) (*)

Mà (*) là tích của số nguyên liên tiếp => (*) \(⋮\) 7! ( Đây là tính chất nhé)

=> (*) \(⋮\) 5040 => (*) \(⋮\) 105 => đpcm

P/s : Bạn có thể xét tính chẳn lẻ của n cũng đc nhưng lâu hơn

17 tháng 6 2018

Xét \(5040=2^4.3^2.5.7\)

Phân tích:

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^2-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

Ta có:

\(n^3-7n-6=\left(n+1\right)\left(n+2\right)\left(n-3\right)\)

\(n^3-7n+6=\left(n-1\right)\left(n-2\right)\left(n+3\right)\)

Do đó \(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Đây là tích 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp:

- Tồn tại 1 bội số của 5 (nên A chia hết cho 5)

- Tồn tại 1 bội số của 7 (nên A chia hết cho 7)

- Tồn tại 2 bội số của 3 (nên A chia hết cho 9)

- Tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 (nên A chia hết cho 16)

A chia hết cho các số 5, 7, 9, 16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

Ta có : \(n^3\left(n^2-7\right)^2-36n\)

\(=n[\left(n^3-7n\right)^2-36]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n[\left(n-3\right)\left(n^2+3n+2\right)][\left(n+3\right)\left(n^2-3n+2\right)]\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)\)

là tích của 7 số nguyên liên tiếp 

\(\Rightarrow n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)⋮7\)

hay \(n^3\left(n^2-7\right)^2-36n⋮7\forall n\inℤ\)

7 tháng 12 2018

B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow xy+yz+zx=0\)

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                      \(=x^2+y^2+z^2+2.0\)

                                       \(=x^2+y^2+z^2\left(đpcm\right)\)

B2)  \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)

8 tháng 12 2018

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)