\(5a^2+15ab-b^2⋮49\)

\(\Leftrightarrow3a+b⋮7\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

Nếu \(5a^2+15ab-b^2⋮49\)

\(\Leftrightarrow5a^2+15ab-b^2⋮7.\left(1\right)\)

Mặt khác lại có

 \(\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2=7a\left(2a+3b\right)⋮7.\left(2\right)\)

Từ (1) và (2) suy ra 

\(\left(3a+b\right)^2⋮7\Rightarrow3a+b⋮7\)(vì 7 là số nguyên tố)

Nếu \(3a+b⋮7\),ta có 

\(\left(3a+b\right)+2\left(2a+3b\right)=7\left(a+b\right)⋮7\)

\(\Rightarrow2\left(2a+3b\right)⋮7\Rightarrow2a+3b⋮7\)(vì(2,7)=1).

Suy ra \(\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2\)

=\(7a\left(2a+3b\right)⋮49.\left(3\right)\)

Vì \(3a+b⋮7\)nên \(\left(3a+b\right)^2⋮49.\left(4\right)\)

Từ (3)và(4) suy ra \(5a^2+15ab-b^2⋮49\)

Vậy \(5a^2+15ab-b^2⋮49\Leftrightarrow3a+b⋮7\)

hỏi bài và tự trả lời thì hỏi làm gì OvO

2 tháng 6 2017

*Nếu a\(⋮\)49 hoặc b\(⋮\)49 => dpcm (*)

* Ta xét Nếu a\(⋮̸\)49 hoặc b\(⋮̸\)49

+ Nếu \(3a+b⋮7\Rightarrow\left(3a+b\right)^2⋮49.\Leftrightarrow A=9a^2+6ab+b^2⋮49\)

B=\(5a^2+15ab-b^2\)

A + B =14a2 +21ab = 7a(2a+3b) = 7a(9a+3b-7a) =7.3(3a+b) - 49a2.\(⋮\)49 vì 3a+b \(⋮\)7.

A\(⋮\)49 và A+B\(⋮\)49 => B=\(5a^2+15ab-b^2\)\(⋮\)49 (1)

+Nếu B= \(5a^2+15ab-b^2\)\(⋮\)49 => 45a2 +15ab+(9a2-b2)-49a2\(⋮\)49

=> 15a(3a+b)+(3a+b)(3a-b)-49a2\(⋮\)49

=>(3a+b)18a-49a2 \(⋮\)49 => 3a+b\(⋮\)49 hay 3a+b \(⋮\)7 (2)

(*)(1)(2) => dpcm.

9 tháng 7 2019

Ta có : 3a + 11b chia hết cho 17

       13( 3a + 11b ) chia hết cho 17

Hay : 39a + 143b chia hết cho 17

Mà : 34a + 136b chia hết cho 17

Suy ra : (39a+143b)-(34a+136b)=5a+7b chia hết cho 17

Bạn tự chứng minh theo chiều ngược lại nhé !

\(\text{Vì }5a+3b⋮7\Rightarrow3\left(5a+3b\right)⋮7\Rightarrow15a+9b⋮7\)

\(\text{Giả sử }3a-b⋮7\Rightarrow5\left(3a-b\right)⋮7\Rightarrow15a-5b⋮7\)

\(\Rightarrow15a+9b-15a+5b⋮7\Rightarrow14b⋮7\)

\(\Rightarrow3a-b⋮7\)

19 tháng 11 2018

5a+3b \(⋮\)7 ( a,b thuộc N)

=> 5a+3b-7b\(⋮\)7

=> 5a-4b \(⋮\)7

=> 10a-8b\(⋮\)7

=. 3a-b \(⋮\)7

=> đpcm

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)

17 tháng 7 2016

B,

\(7S=7^2+7^3+.......+7^{50}\)

\(7S-S=\left(7^2+7^3+.....+7^{49}\right)-\left(7+7^2+........+7^{50}\right)\)

\(\Rightarrow6S=7^{50}-7\)

\(\Rightarrow6S+7=7^{50}-7+7=7^{50}\)

Vậy 6S+7 là lũy thừa của 7

17 tháng 7 2016

a) S = 7 + 72 + 73 + 74 + ... + 748 + 749 ( có 49 số, 49 chia 3 dư 1)

S = 7 + (72 + 73 + 74) + (75 + 76 + 77) + ... + (747 + 748 + 749)

S = 7 + 72.(1 + 7 + 72) + 75.(1 + 7 + 72) + ... + 747.(1 + 7 + 72)

S = 7 + 72.57 + 75.57 + ... + 747.57

S = 7 + 57.(72 + 75 + ... + 747)

S = 7 + 19.3.(72 + 75 + ... + 747)

S - 7 = 19.3.(72 + 75 + ... + 747) chia hết cho 19

=> đpcm

b) S = 7 + 72 + 73 + ... + 748 + 749

7S = 72 + 73 + 74 + ... + 749 + 750

7S - S = 750 - 7 = 6S

6S + 7 = 750 là lũy thừa của 7

=> đpcm

Đề bài bn chép sai, mk sửa lại rùi đó