Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
Lời giải:
a) $f(x)=x^5-3x+3$ liên tục trên $R$
$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$
Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$
Nghĩa là pt đã cho luôn có nghiệm.
b) $f(x)=x^5+x-1$ liên tục trên $R$
$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$
Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$
Hay pt đã cho luôn có nghiệm.
c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$
$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$
$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$
Hay pt đã cho luôn có nghiệm.
Đặt \(f\left(x\right)=\left(m^2-m+1\right)x^4-3x^3-1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng trên R
\(f\left(0\right)=-1< 0\)
\(f\left(3\right)=81\left(m^2-m+1\right)-55=81\left(m-\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)
\(\Rightarrow f\left(0\right).f\left(3\right)< 0\Rightarrow\) pt có ít nhất 1 nghiệm thuộc \(\left(0;3\right)\)
\(f\left(-1\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)
\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow\) pt có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)
\(\Rightarrow\) Pt có ít nhất 2 nghiệm thuộc \(\left(-1;3\right)\Rightarrow\) có ít nhất 2 nghiệm trên \(\left(-5;5\right)\)
Đặt \(f\left(x\right)=x^4-\left(3m-2\right)x^3+mx-1\)
Hiển nhiên \(f\left(x\right)\) liên tục và xác định trên R
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^4-\left(3m-2\right)x^3+mx+1\right)=+\infty\) dương
\(\Rightarrow\) Luôn tồn tại 1 số thực \(a>0\) đủ lớn sao cho \(f\left(a\right)>0\)
\(\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;a\right)\) hay \(\left(0;+\infty\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(x^4-\left(3m-2\right)x^3+mx-1\right)=+\infty\) dương
\(\Rightarrow\) Luôn tồn tại 1 số thực \(b< 0\) sao cho \(f\left(b\right)>0\)
\(\Rightarrow f\left(0\right),f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)
Vậy phương trình luôn có ít nhất 2 nghiệm với mọi m
Chứng minh rằng phương trình sau có ít nhất hai nghiệm :
- Xét hàm số: f ( x ) = 2 x 3 - 5 x 2 + x + 1 là hàm đa thức.
⇒ Hàm số f liên tục trên R.
- Ta có:
có ít nhất một nghiệm c1 ∈ (0;1).
có ít nhất một nghiệm c2 ∈ (2;3).
- Mà c ≠ c 2 nên PT f(x) = 0 có ít nhất 2 nghiệm.
Đặt \(f\left(x\right)=m\left(x-1\right)^3\left(x^2-4\right)+x^4-3\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(1\right)=-2< 0\)
\(f\left(2\right)=13>0\)
\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (1;2)
\(f\left(-2\right)=13>0\Rightarrow f\left(1\right).f\left(-2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc khoảng (-2;1)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm phân biệt
- Xét hàm số f ( x ) = x 3 + x - 1 , ta có f(0) = -1 và f(1) = 1 nên: f(0).f(1) < 0.
- Mặt khác: f ( x ) = x 3 + x - 1 là hàm đa thức nên liên tục trên [0;1].
- Suy ra f ( x ) = x 3 + x - 1 đồng biến trên R nên phương trình x 3 + x - 1 = 0 có nghiệm duy nhất x 0 ∈ ( 0 ; 1 ) .
- Theo bất đẳng thức Côsi: