Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)(Vì a, b, c > 0)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ab+bc\)
\(\Leftrightarrow ac< bc\)(Đúng vì c > 0 và a < b)
Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)(đpcm)
Trả lời:
Ta có:
\(\frac{a}{b}< \frac{a+c}{b+c}\)
⇔ a(b + c) < (a + c)b
(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)
⇔ ab + ac < ab + bc
⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)
a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)
Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)
b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)
Giả sử a<b, ta đặt b=a+k(k>0)
Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)
Chứng minh tương tự với a>b
a ) Ta có : d - d = 0
mà c > d => c - d > 0
Lấy VD : d = 4 , d -d = 4 - 4 = 0
c = 5 , c - d = 5 - 4 = 1 > 0
a ) Ta có : d - d = 0
mà c > d => c - d > 0
b) Ta có : g - h < h - h = 0
=> g<h
Có: a > b
\(\Rightarrow\) ac > bc
\(\Rightarrow\) ab + ac > ab + bc
\(\Rightarrow\) a( b + c) > b(a + c)
\(\Rightarrow\dfrac{a}{b}>\dfrac{a+c}{b+c}\)
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ab+bc\)
\(\Leftrightarrow ac< bc\)
\(\Rightarrow a< b\) (đúng)
Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\) (đpcm)
Ta có giả sử \(\frac{a}{b}< \frac{a+c}{b+c}\) ( a,b,c nguyên dương )
(=) \(a.\left(b+c\right)< b.\left(a+c\right)\)
(=) \(ab+ac< ab+bc\)
(=) \(ac< bc\)( Cùng loại cả 2 vế \(ab\))
(=) \(a< b\)(Loại bỏ 2 vế \(c\))
Điều \(a< b\)đúng vì theo đề bài
Vì điều \(a< b\)đúng
(=) \(\frac{a}{b}< \frac{a+c}{b+c}\)với a>0,b>0,c>0 và a<b (đpcm)
\(VT=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+c+b}+\frac{c+b}{c+a+b}=2=VT\)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a+b+c}{b+c}-1+\frac{a+b+c}{c+a}-1+\frac{a+b+c}{a+b}-1\ge\frac{3}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
Áp dụng bđt Co-si cho 3 số
\(\hept{\begin{cases}\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge3\sqrt[3]{\frac{1}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}}\end{cases}}\)
Nhân 2 vế vào sẽ đc dpcm
Dấu "=" khi a = b = c
Anh Incursion:Em có cách khác!Anh check giúp ạ.
Chuẩn hóa a + b + c = 3.Thì BĐT trở thành:
\(\frac{a}{3-a}+\frac{b}{3-b}+\frac{c}{3-c}\ge\frac{3}{2}\)
Ta sẽ c/m: \(\frac{a}{3-a}\ge\frac{3}{4}\left(a-1\right)+\frac{1}{2}\).
Thật vậy,xét hiệu hai vế: \(VT-VP=\frac{3\left(a-1\right)^2}{4\left(3-a\right)}\).Do a + b + c = 3 và a,b,c > 0 hiển nhiên ta có: a< 3 tức là 3 - a > 0
Suy ra \(VT-VP=\frac{3\left(a-1\right)^2}{4\left(3-a\right)}\ge0\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm.
Dấu "=" xảy ra khi a = b = c
Ta có: a b < a + c b + c
⇔ a(b + c) < (a + c)b
(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)
⇔ ab + ac < ab + bc
⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)