Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(H\left(x\right)=2x^2+1\ge1>0\)
Nên đa thức trên vô nghiệm
x2 + 2x + 2
= x2 + x + x + 1 + 1
= x(x+1) + 1(x+1) + 1
= (x+1).(x+1)+1
= (x+1)2+1. Vì (x+1)2\(\ge\)0 \(\forall\) x
\(\Rightarrow\)(x+1)2+1 > 1 \(\forall\) x
Vậy đa thức trên vô nghiệm
A = x\(^2\) + 2x + 2
= x\(^2\) + 2x + 1 + 1
= (1 + 1)\(^2\) + 1. Để thấy:
(x + 1)\(^2\) \(\ge\)0\(\forall\)x \(\Rightarrow\) (x + 1)\(^2\) + 1 >0\(\forall\)x
Vậy đa thức x\(^2\) + 2x + 2 không có nghiệm.
a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)
\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)
\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)
\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)
b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)
\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm
tớ hk lớp 7 n chưa làm quen vs dạng này bao giờ sorry tớ 0 tl đc
Áp dụng hằng đẳng thức đáng nhớ ta có :
x4+2x2+1=(x2+1)2
Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0
=>PT trên vô nghiệm
Theo hằng đẳng thức đáng nhớ , ta có :
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
Vậy phương trình vô nghiệm.
\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1=>\left(x-1\right)^2=-1\left(vônghiemej\right)\)
\(x^2-2x+2\)
\(=x^2-x-x+1+1\)
\(=\left(x^2-x\right)-\left(x-1\right)+1\)
\(=x\left(x-1\right)-\left(x-1\right)+1\)
\(=\left(x-1\right)\left(x-1\right)+1\)
\(=\left(x-1\right)^2+1\)
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+1\ge1\forall x\)
\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)
Vậy đa thức x2 - 2x + 2 vô nghiệm
Ta có :
\(P\left(x\right)=x^2-2x+2\)
\(\Rightarrow P\left(x\right)=x^2-x-x+1+1\)
\(\Rightarrow P\left(x\right)=x\left(x-1\right)-\left(x-1\right)+1\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-1\right)+1\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)^2+1\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+1\ge1\)
\(\Rightarrow P\left(x\right)\ge1\)
Vậy đa thức vô nghiệm