Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x\left(x+1\right)^4+x\left(x+1\right)^3+x\left(x+1\right)^2+\left(x+1\right)^2\)
\(=x\left(x+1\right)^4+x\left(x+1\right)^3+\left(x+1\right)^2.\left(x+1\right)\)
\(=x\left(x+1\right)^4+x\left(x+1\right)^3+\left(x+1\right)^3\)
\(=x\left(x+1\right)^4+\left(x+1\right)^3\left(x+1\right)\)
\(=x\left(x+1\right)^4+\left(x+1\right)^4=\left(x+1\right)^4\left(x+1\right)=\left(x+1\right)^5\)
Chứng minh rằng:
\(\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x^2+3x+2\right)\)
Ta có\(\left(x+1\right)^{2n}⋮\left(n+1\right)\)(1)
\(\left(x+2\right)^n-1=\left(x+1\right)\left[\left(x+2\right)^{n-1}+\left(n+2\right)^{n-2}+...+1\right]\)
\(\Rightarrow\left(x+2\right)^n-1⋮\left(x+1\right)\)(2)
Từ (1) và (2)\(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x+1\right)\) (*)
Lại có\(\left(x+1\right)^{2n}-1\)
\(=\left[\left(x+1\right)^n+1\right]\left[\left(x+1\right)^n-1\right]\)
\(=\left[\left(x+1\right)^n-1\right]\left(x+2\right)\left[\left(x+1\right)^{n-1}-\left(x+1\right)^{n-2}+........+1\right]\)
\(\Rightarrow\left(x+1\right)^{2n}-1⋮\left(x+2\right)\)
Mà \(\left(x+2\right)^n⋮\left(x+2\right)\)
\(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x+2\right)\)(**)
Ta lại có (x+1) và (x+2) nguyên tố cùng nhau (***)
Từ (*);(**) và(***) \(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x^2+3x+2\right)\)
Thôi em không cần bài này nữa đâu mọi người :) em biết làm rồi :) //chờ mãi chả ai làm giúp :(( buồn mọi người ghia ớ :'( //
a, = x^2+a+x^2a+a^2+a^2x^2+1/x^2-a-x^2a+a^2+a^2x^2+1
= (x^2+1).(a^2+a+1)/(x^2+1)(a^2-a+1) = a^2+a+1/a^2-a+1
=> phân thức trên ko phụ thuộc vào biến x
=> ĐPCM
Nếu đúng thì k mk nha
a) Đk : \(x\ne0;\ne1\)
\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)
\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)
\(\Rightarrow\dfrac{0}{x-1}=0\)
=> Phương trình có vô số nghiệm x
b) Đk : \(x\ne2;x\ne3\)
\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)
\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)
=0
\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)
\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)
=> Phương trình vô nghiệm
c)
\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)
\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)
\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)
=> PTVN
d) Thôi tự làm đi, câu này dễ :Vvv
e)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40
\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)
\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
Đặt
\(x^2+6x+7=t\)
Phương trình tương đương
\(\left(t-1\right)\left(t+1\right)=40\)
\(t^2=41\)
\(\)\(t=\pm\sqrt{41}\)
Thay vào tìm x.
Em tham khảo: Câu hỏi của Edogawa G - Toán lớp 8 - Học toán với OnlineMath