\(x\left(x+1\right)^4+x\left(x+1\right)^3+x\left(x+1\right)^2+x=\left(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

Ta có:

\(x\left(x+1\right)^4+x\left(x+1\right)^3+x\left(x+1\right)^2+\left(x+1\right)^2\)

\(=x\left(x+1\right)^4+x\left(x+1\right)^3+\left(x+1\right)^2.\left(x+1\right)\)

\(=x\left(x+1\right)^4+x\left(x+1\right)^3+\left(x+1\right)^3\)

\(=x\left(x+1\right)^4+\left(x+1\right)^3\left(x+1\right)\)

\(=x\left(x+1\right)^4+\left(x+1\right)^4=\left(x+1\right)^4\left(x+1\right)=\left(x+1\right)^5\)

12 tháng 10 2017

Ta có\(\left(x+1\right)^{2n}⋮\left(n+1\right)\)(1)

\(\left(x+2\right)^n-1=\left(x+1\right)\left[\left(x+2\right)^{n-1}+\left(n+2\right)^{n-2}+...+1\right]\)

\(\Rightarrow\left(x+2\right)^n-1⋮\left(x+1\right)\)(2)

Từ (1) và (2)\(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x+1\right)\)       (*)

Lại có\(\left(x+1\right)^{2n}-1\)

\(=\left[\left(x+1\right)^n+1\right]\left[\left(x+1\right)^n-1\right]\)

\(=\left[\left(x+1\right)^n-1\right]\left(x+2\right)\left[\left(x+1\right)^{n-1}-\left(x+1\right)^{n-2}+........+1\right]\)

\(\Rightarrow\left(x+1\right)^{2n}-1⋮\left(x+2\right)\)

Mà \(\left(x+2\right)^n⋮\left(x+2\right)\)

\(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x+2\right)\)(**)

Ta lại có (x+1) và (x+2) nguyên tố cùng nhau (***)

Từ (*);(**) và(***) \(\Rightarrow\left[\left(x+1\right)^{2n}+\left(x+2\right)^n-1\right]⋮\left(x^2+3x+2\right)\)

17 tháng 8 2018

Những hằng đẳng thức đáng nhớ (Tiếp 2)

21 tháng 8 2018

Cậu ơi, sao lại ra được bước thứ 2 vậy?

Thôi em không cần bài này nữa đâu mọi người :) em biết làm rồi :) //chờ mãi chả ai làm giúp :(( buồn mọi người ghia ớ :'( //

22 tháng 11 2017

a, = x^2+a+x^2a+a^2+a^2x^2+1/x^2-a-x^2a+a^2+a^2x^2+1

   = (x^2+1).(a^2+a+1)/(x^2+1)(a^2-a+1) = a^2+a+1/a^2-a+1

=> phân thức trên ko phụ thuộc vào biến x

=> ĐPCM

Nếu đúng thì k mk nha

30 tháng 3 2018

Hỏi đáp Toán

30 tháng 3 2018

Dài quá c ơi :<

23 tháng 2 2019

a) Đk : \(x\ne0;\ne1\)

\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)

\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)

\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)

\(\Rightarrow\dfrac{0}{x-1}=0\)

=> Phương trình có vô số nghiệm x

b) Đk : \(x\ne2;x\ne3\)

\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)

\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)

=0

\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)

\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)

=> Phương trình vô nghiệm

c)

\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)

=> PTVN

d) Thôi tự làm đi, câu này dễ :Vvv

e)

\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40

\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)

\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

Đặt

\(x^2+6x+7=t\)

Phương trình tương đương

\(\left(t-1\right)\left(t+1\right)=40\)

\(t^2=41\)

\(\)\(t=\pm\sqrt{41}\)

Thay vào tìm x.

24 tháng 2 2019

Thanks ;)