K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

A=x(x-6)+10

=x2-6x+10

=x2-6x+32+1

=(x-3)2+1

Mà (x-3)2≥0 với mọi x

⇒ (x-3)2+1>0 với mọi x

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

12 tháng 7 2016

A = x(x - 6) + 10

A = x2 - 6x + 10

A = x2 - 2.3.x + 32 + 1

A = (x - 3)2 + 1

Vì  (x - 3)2 \(\ge\)0 với mọi x

=>  (x - 3)2 + 1 \(\ge\)

=> A \(\ge\)1

=> A luôn dương với mọi x (Đpcm)

19 tháng 8 2020

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

19 tháng 8 2020

thanks bạn nhìu

30 tháng 5 2021

`A=x(x-6)+10=x^2-6x+10`

`=x^2 -2.x .3 + 3^2 + 1`

`=(x-3)^2+1 >0 forall x`

`B=x^2-2x+9y^2-6y+3`

`=(x^2-2x+1)+(9y^2-6y+1)+1`

`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.

 

19 tháng 6 2016

\(A=x\left(x-6\right)+10=x^2-6x+10\)

   \(=\left(x-3\right)^2+1>0\) với mọi x

\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

    \(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

20 tháng 7 2016

a) \(A=x^2+2x+3=x^2+2x+1+2\)

\(=\left(x+1\right)^2+2\ge2\)

Vậy A luôn dương với mọi x

b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+2^2\right)-1\)

\(=-\left(x-2\right)^2-1\le-1\)

Vậy B luôn âm với mọi x

20 tháng 7 2016

a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)

Vậy x2 +2x+3 luôn dương.

b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)

Vậy -x2 +4x-5 luôn luôn âm.

5 tháng 10 2021

\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

\(B=x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)