Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2-3z^2+6yx+3y^2=3\left[x^2-z^2+2xy+y^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-z\right)\left(x+y+z\right)⋮\left(x+y+z\right)\)
bạn ơi ở trên 3y mà
bạn giải cách khác giúp mình được không???
Ta có:
\(x^2-y^2-z^2=0\left(gt\right)\)
Nếu \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
\(\Rightarrow\left(5x-3y\right)^2-16z^2=\left(3x-5y\right)^2\)
\(\Rightarrow\left(5x-3y\right)^2-\left(3x-5y\right)^2=16z^2\)
\(\Rightarrow\left(5x-3y-3x+5y\right)\left(5x-3y+3x-5y\right)=16z^2\)
\(\Rightarrow\left(2x+2y\right)\left(8x-8y\right)=16z^2\)
\(\Rightarrow2\left(x+y\right).8\left(x-y\right)=16z^2\)
\(\Rightarrow16\left(x^2-y^2\right)=16z^2\)
\(\Rightarrow x^2-y^2=z^2\)
\(\Rightarrow x^2-y^2-z^2=0\)
\(\Rightarrow\) Đúng với giả thuyết ban đầu
Vậy \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\) với \(x^2-y^2-z^2=0\)
Lần lượt trừ hai vế của hệ phương trình ta có : \(x^3-y^3=3\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)
\(\Leftrightarrow x^2+y^2+xy=3\) ( Do \(x\ne y\)).
Làm tương tự như vậy ta có hệ sau : \(\hept{\begin{cases}x^2+xy+y^2=3\\x^2+xz+z^2=3\\y^2+yz+z^2=3\end{cases}}\) (1)
Làm tương tự như trên, trừ lần lượt từng vế phương trình ta có:
\(x^2+xy+y^2-\left(x^2+xz+z^2\right)=3-3\)
\(\Leftrightarrow xy-xz+y^2-z^2=0\)
\(\Leftrightarrow\left(y-z\right)\left(x+y+z\right)=0\)
\(\Leftrightarrow x+y+z=0\)( do \(x\ne y\))
\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\).
Cộng lần lượt từng vế của 3 phương trình ta được : \(2\left(x^2+y^2+z^2\right)+xy+xz+yz=9\).
Đặt \(a=x^2+y^2+z^2,b=xy+zy+zx\) ta có hệ sau:
\(\hept{\begin{cases}a+2b=0\\2a+b=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=-3\end{cases}}}\)
Vậy \(x^2+y^2+z^2=6.\)
1. Rút gọn biểu thức:
(x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)
= (x - y + z)2 + 2(x - y + z)(y - z) + (y - z)2
= (x - y + z + y - z)2
= x2
2. Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1
Giải
Đặt a = 5q + 4 (q \(\in\) N), ta có:
a2 = (5q + 4)2 = 25q2 + 40q + 16 = (25q2 + 40q + 15) + 1 chia cho 5 dư 1.
ta có
(5x - 3y + 4z)(5x - 3y - 4z) = (5x - 3y)² - 16z²
= 25x² - 30xy + 9y² - 16x² + 16y²
= 25y² - 30xy + 9x² = (5y - 3x)² = (3x - 5y)²
Sửa đề: 3x^2-3z^2+6xy+3y^2
=3(x^2+2xy+y^2-z^2)
=3(x+y+z)(x+y-z) chia hết cho x+y+z