K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2022

Sửa đề: 3x^2-3z^2+6xy+3y^2

=3(x^2+2xy+y^2-z^2)

=3(x+y+z)(x+y-z) chia hết cho x+y+z

7 tháng 11 2018

\(3x^2-3z^2+6yx+3y^2=3\left[x^2-z^2+2xy+y^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y-z\right)\left(x+y+z\right)⋮\left(x+y+z\right)\)

7 tháng 11 2018

bạn ơi ở trên 3y mà 
bạn giải cách khác giúp mình được không???
 

16 tháng 8 2018

Ta có:

\(x^2-y^2-z^2=0\left(gt\right)\)

Nếu \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)

\(\Rightarrow\left(5x-3y\right)^2-16z^2=\left(3x-5y\right)^2\)

\(\Rightarrow\left(5x-3y\right)^2-\left(3x-5y\right)^2=16z^2\)

\(\Rightarrow\left(5x-3y-3x+5y\right)\left(5x-3y+3x-5y\right)=16z^2\)

\(\Rightarrow\left(2x+2y\right)\left(8x-8y\right)=16z^2\)

\(\Rightarrow2\left(x+y\right).8\left(x-y\right)=16z^2\)

\(\Rightarrow16\left(x^2-y^2\right)=16z^2\)

\(\Rightarrow x^2-y^2=z^2\)

\(\Rightarrow x^2-y^2-z^2=0\)

\(\Rightarrow\) Đúng với giả thuyết ban đầu

Vậy \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\) với \(x^2-y^2-z^2=0\)

1 tháng 11 2016

Lần lượt trừ hai vế của hệ phương trình ta có : \(x^3-y^3=3\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)
                                                                    \(\Leftrightarrow x^2+y^2+xy=3\) ( Do \(x\ne y\)).
Làm tương tự như vậy ta có hệ sau :  \(\hept{\begin{cases}x^2+xy+y^2=3\\x^2+xz+z^2=3\\y^2+yz+z^2=3\end{cases}}\) (1)
Làm tương tự như trên, trừ lần lượt từng vế phương trình  ta có:
                                    \(x^2+xy+y^2-\left(x^2+xz+z^2\right)=3-3\) 
                                                          \(\Leftrightarrow xy-xz+y^2-z^2=0\)
                                                          \(\Leftrightarrow\left(y-z\right)\left(x+y+z\right)=0\)
                                                          \(\Leftrightarrow x+y+z=0\)( do \(x\ne y\))
           \(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\).
Cộng lần lượt từng vế của 3 phương trình ta được : \(2\left(x^2+y^2+z^2\right)+xy+xz+yz=9\).
Đặt \(a=x^2+y^2+z^2,b=xy+zy+zx\) ta có hệ sau:
       \(\hept{\begin{cases}a+2b=0\\2a+b=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=-3\end{cases}}}\)
Vậy \(x^2+y^2+z^2=6.\)

                                                          

1 tháng 11 2016

tớ ko bt

16 tháng 9 2017

1. Rút gọn biểu thức:

(x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)

= (x - y + z)2 + 2(x - y + z)(y - z) + (y - z)2

= (x - y + z + y - z)2

= x2

2. Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1

Giải

Đặt a = 5q + 4 (q \(\in\) N), ta có:

a2 = (5q + 4)2 = 25q2 + 40q + 16 = (25q2 + 40q + 15) + 1 chia cho 5 dư 1.

26 tháng 6 2016

ta có 
(5x - 3y + 4z)(5x - 3y - 4z) = (5x - 3y)² - 16z² 
= 25x² - 30xy + 9y² - 16x² + 16y² 
= 25y² - 30xy + 9x² = (5y - 3x)² = (3x - 5y)²

10 tháng 9 2017

lần sau suy nghĩ kĩ rồi hãy post lên nhé ^^ 
ta có 
(5x - 3y + 4z)(5x - 3y - 4z) = (5x - 3y)² - 16z² 
= 25x² - 30xy + 9y² - 16x² + 16y² 
= 25y² - 30xy + 9x² = (5y - 3x)² = (3x - 5y)²

10 tháng 8 2017

biết chết liền

10 tháng 8 2017

trả lời giúp đi

24 tháng 10 2015

Ta có: 

 (5x – 3y + 4z)( 5x –3y –4z)  = (5x – 3y )2 –16z2=  25x2 –30xy + 9y2 –16 z2

        x2=y2 + z2 nên 25x2 –30xy + 9y2 –16 (x2 –y2)  =  (3x –5y)2