K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

+) Giả sử 0<a≤c0<a≤c ta có: a2≤c2a2≤c2

a2+b2>5c2a2+b2>5c2

⇒a2+b2>5a2⇒a2+b2>5a2

⇒b2>4a2⇒b2>4a2

⇒b>2a⇒b>2a (1)

c2>a2⇒b2+c2>a2+b2>5c2c2>a2⇒b2+c2>a2+b2>5c2

⇒b2>4c2⇒b2>4c2

⇒b>2c⇒b>2c (2)

Cộng (1), (2) ⇒2b>2a+2c⇒2b>2a+2c

⇒b>a+c⇒b>a+c ( vô lí )

⇒c<a⇒c<a

+) Chứng minh tương tự suy ra c < b

{c<ac<b⇒{Cˆ<AˆCˆ<Bˆ⇒2Cˆ<Aˆ+Bˆ{c<ac<b⇒{C^<A^C^<B^⇒2C^<A^+B^

⇒3Cˆ<Aˆ+Bˆ+Cˆ⇒3C^<A^+B^+C^

⇒3Cˆ<180o⇒3C^<180o

⇒Cˆ<60o(đpcm)⇒C^<60o(đpcm)

Vậy...

4 tháng 3 2019

Xin lỗi các bạn dấu mũ bị lộn nhé!

22 tháng 1 2017

èo, bài này tớ lm rồi

22 tháng 1 2017

ko tin

làm rồi thì chỉ đi

31 tháng 3 2017

Giải:

+) Giả sử \(0< a\le c\) ta có: \(a^2\le c^2\)

\(a^2+b^2>5c^2\)

\(\Rightarrow a^2+b^2>5a^2\)

\(\Rightarrow b^2>4a^2\)

\(\Rightarrow b>2a\) (1)

\(c^2>a^2\Rightarrow b^2+c^2>a^2+b^2>5c^2\)

\(\Rightarrow b^2>4c^2\)

\(\Rightarrow b>2c\) (2)

Cộng (1), (2) \(\Rightarrow2b>2a+2c\)

\(\Rightarrow b>a+c\) ( vô lí )

\(\Rightarrow c< a\)

+) Chứng minh tương tự suy ra c < b

\(\left\{{}\begin{matrix}c< a\\c< b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{C}< \widehat{A}\\\widehat{C}< \widehat{B}\end{matrix}\right.\Rightarrow2\widehat{C}< \widehat{A}+\widehat{B}\)

\(\Rightarrow3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}\)

\(\Rightarrow3\widehat{C}< 180^o\)

\(\Rightarrow\widehat{C}< 60^o\left(đpcm\right)\)

Vậy...

12 tháng 2 2020

tại sao từ b2 > 4a2 lại suy ra được b > 2a vậy bạn