Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\\ \)
- Nếu n chia hết cho 5 thì A chia hết cho 5
- Nếu n chia 5 dư 1 thì (n-1) chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 2 thì n = 5k +2 => n2 + 1 = 25k2 + 20k + 4 + 1 chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 3 thì n = 5k +3 => n2 + 1 = 25k2 + 30k + 9 + 1 chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 4 thì (n+1) chia hết cho 5 => A chia hết cho 5
n thuộc N lớn hơn hoặc bằng 2 chỉ có 5 trường hợp có số dư như trên khi chia cho 5. Nên A chia hết cho 5 với mọi n thuộc N lớn hơn hoặc bằng 2.
x và y chia 5 dư 2 nên \(\left(x-y\right)⋮5\)
Ta có
\(\left(x+3\right)⋮5\Rightarrow3\left(x+3\right)⋮5\)
\(\left(y+3\right)⋮5\Rightarrow2\left(y+3\right)⋮5\)
\(\Rightarrow3\left(x+3\right)+2\left(y+3\right)=3x+2y+15⋮5\)
\(15⋮5\Rightarrow\left(3x+2y\right)⋮5\)
\(\Rightarrow\left(x-y\right)+\left(3x+2y\right)=4x+y⋮5\left(dpcm\right)\)
câu a là thế này : 2 số tự nhiên liên tiếp thì sẽ là 1 số chẵn và 1 số lẽ mà số chẵn chắc chắn chia ht cho 2
và
1 số lẽ nhân với 1 số chẵn sẽ là 1 số chẵn
=> 2 số tự nhiên liên tiếp chia ht cho 2
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
Ta có : \(a.a=a^2\)là một số chính phương nên sẽ có tận cùng là 0,1,4,5,6,9
0 chia 5 sẽ dư 0
1 chia 0 dư 1
4 chia 5 dư 4
5 chia 5 dư 0
6 chia 5 dư 1
9 chia 5 dư 4
=> ta có đpcm
đếu bít