Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:11n+2+122n+1
=11n.112+(122)n.12
=11n.121+144n.12
=11n.(133-12)+144n.12
=11n.133-11n.12+144n.12
=11n.133+144n.12-11n.12
=11n.133+12.(144n-11n)
Ta có hằng đẳng thức:an-bn=(a-b)(an-1+an-2b+.....+abn-2+bn-1) luôn chia hết cho (a-b)
=>144n-11n chia hết cho (144-11)=133
=>12.(144n-11n) chia hết cho 133
Mà 11n.133 chia hết cho 133
=>11n.133+12.(144n-11n) chia hết cho 133
=> đpcm
11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n
=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12
Ta có: 133 . 11n chia hết 133; 144n – 11n chia hết (144 – 11)
\(\Rightarrow\) 144n – 11n chia hết 133 \(\Rightarrow\) 11n + 1 + 122n + 1
LƯU ÝCác bạn học sinh ĐƯỢC đăng các câu hỏi 1+1 = ?
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.
11n + 2+ 122n + 1 = 121 . 11n +12 . 144n
= (133-12) . 11n + 12 . 144n= 133 . 11n + (144n- 11n) . 12
ta có 133.11n chia hết cho 133 ; 144n - 11 chia hét cho 114-11
=> 144n - 11n chia hết hết 133
11n + 2 + 122n + 1 = 11n . 121 + 144n . 12
Ta có: 144 chia 133 dư 11
144n đồng dư với 11n (modul 133)
11n.121 + 144n.12 đồng dư với 11n.121 + 11n . 12
=> 11n . 133 đồng dư với 0 (modul 133) => ĐPCM
\(=11^n.11^2+12^{2n}.12\)
\(=11^n.121+144^n.12\)
\(=11^n.121+\left(133+11\right)^n.12\)
\(=11^n.121+BS\left(133\right)+11^n.12\)
\(=11^n\left(121+12\right)+BS\left(133\right)\)
\(=11^n.133+BS\left(133\right)\) chia hết cho 133
Duyệt nhé bạn