Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai rồi bạn, đáng lẽ đề bài phải như thế này:
Chứng minh rằng với mọi \(x\in[-\frac{3}{4};+\infty)\) thì \(\frac{x}{x^2+1}\le\frac{18}{25}x+\frac{3}{50}\)
Ta sẽ phân tích bất phương trình kia
\(\Leftrightarrow0,72x+0,06\ge\frac{x}{x^2+1}\)
\(\Leftrightarrow0,72x^3+0,06x^2-0,28x+0,06\ge0\)
\(\Leftrightarrow0,72\left(x+\frac{3}{4}\right)\left(x-\frac{1}{3}\right)^2\ge0\Leftrightarrow x\ge-\frac{3}{4}\)
Chỉ đúng trong trường hợp các số thực dương (kì lạ là các bạn rất thích quên điều kiện này khi đăng đề lên)
a/ \(\frac{a^3}{b^2}+a\ge2\sqrt{\frac{a^4}{b^2}}=\frac{2a^2}{b}\) ; \(\frac{b^3}{c^2}+b\ge\frac{2b^2}{c}\); \(\frac{c^3}{a^2}+c\ge\frac{2c^2}{a}\)
Cộng vế với vế:
\(VT+a+b+c\ge2VP\Rightarrow VT\ge2VP-\left(a+b+c\right)\)
Mà \(2VP=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{\left(a+b+c\right)^2}{a+b+c}\)
\(\Rightarrow2VP\ge VP+a+b+c\)
\(\Rightarrow2VP-\left(a+b+c\right)\ge VP\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi \(a=b=c\)
Câu dưới tương tự:
\(\frac{a^5}{b^3}+a^2+a^2\ge\frac{3a^3}{b}\) , làm tương tự với 2 cái còn lại và cộng lại:
\(\Rightarrow VT+2\left(a^2+b^2+c^2\right)\ge3\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)=3\left(\frac{a^4}{ab}+\frac{b^4}{ca}+\frac{c^4}{ab}\right)\ge\frac{3\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge3\left(a^2+b^2+c^2\right)\)
\(\Rightarrow VT\ge a^2+b^2+c^2\)
Dấu "=" xảy ra khi \(a=b=c\)
1, \(\frac{3x-4}{x-2}>1\\ \frac{3\left(x-2\right)}{x-2}+\frac{2}{x-2}>1\\ 3+\frac{2}{x-2}>1\\ \frac{2}{x-2}>-2\\ \frac{1}{x-2}>-1\)
\(x-2< -1\\ x< 1\)
Ta có :\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{2}-\dfrac{1}{y}+\dfrac{1}{2}-\dfrac{1}{z}\Leftrightarrow\dfrac{1}{x}=\dfrac{y-2}{2y}+\dfrac{z-2}{2z}\)
Áp dụng bất đẳng thức cô si ta có :\(\dfrac{y-2}{2y}+\dfrac{z-2}{2z}\ge2\sqrt{\dfrac{\left(y-2\right)\left(z-2\right)}{4yz}}=\dfrac{\sqrt{\left(y-2\right)\left(z-2\right)}}{\sqrt{yz}}\)
\(\Rightarrow\)\(\dfrac{1}{x}\ge\dfrac{\sqrt{\left(y-2\right)\left(z-2\right)}}{\sqrt{yz}}\) (1)
Chứng minh tương tự :\(\dfrac{1}{y}\ge\dfrac{\sqrt{\left(x-2\right)\left(z-2\right)}}{\sqrt{xz}}\) (2)
\(\dfrac{1}{z}\ge\dfrac{\sqrt{\left(x-2\right)\left(y-2\right)}}{\sqrt{xy}}\) (3)
Nhân 3 bất đẳng thức (1),(2) và (3) vế theo vế ta được :
\(\dfrac{1}{xyz}\ge\dfrac{\left(x-2\right)\left(y-2\right)\left(z-2\right)}{xyz}\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
Dấu "=" xảy ra khi :\(x=y=z=3\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}\)
\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(3B-B=\left(1+\frac{1}{3}+...+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)\)
\(2B=1-\frac{1}{729}\)
\(B=\frac{1-\frac{1}{729}}{2}\)
\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(2C-C=\left(1+\frac{1}{2}+...+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\right)\)
\(C=1-\frac{1}{64}\)
Ta có:\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{50^2}\)<\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+\(\frac{1}{3\cdot4}\)+...+\(\frac{1}{49\cdot50}\)
<1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)
<1-\(\frac{1}{50}\)<1
Nên \(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{50^2}\)<1
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}=S\)
Đặt S = \(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
Ta lại có: \(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{50}=\frac{49}{50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< S=\frac{49}{50}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\) (đpcm)