\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{3}{4}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

bn làm dạng tổng quát đi ra mà

8 tháng 10 2016

có thì tớ đã ko hỏi

14 tháng 10 2017

Ta có \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

=> biểu thức trên sẽ \(< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

                                  \(=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\)\(\left(dpcm\right)\)

20 tháng 10 2018

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(=\frac{\sqrt{n}}{n\left(n+1\right)}\)

\(=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

=> Biểu thức trên sẽ bé hơn \(2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\Rightarrowđpcm\)

19 tháng 6 2016

Ta có : \(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{\sqrt{k}}{k\left(k+1\right)}=\sqrt{k}\left(\frac{1}{k\left(k+1\right)}\right)=\sqrt{k}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\sqrt{k}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\left(\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+}}\right)\)

\(=\left(1+\frac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)

Áp dụng : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+}}< 2\)

Vậy ta có điều phải chứng minh.