Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(DK:x\ge\frac{2019}{2020}\)
\(\Leftrightarrow\left(2020x-2019-2\sqrt{2020x-2019}+1\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{2020x-2019}-1\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2020x-2019}-1=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow x=1\left(n\right)\)
Vay nghiem cua PT la \(x=1\)
ĐKXĐ:...
\(\Leftrightarrow x^2-2x+1+2020x-2019-2\sqrt{2020x-2019}+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2020x-2019}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{2020x-2019}-1=0\end{matrix}\right.\)
\(\Rightarrow x=1\)
giải phương trình:\(\left(1+\sqrt{x^2+2020x}+2019\right)\left(\sqrt{x+2019}-\sqrt{x+1}\right)=2018\)
\(DK:x\ge\frac{2020}{2019}\)
PT\(\Leftrightarrow\left(\sqrt{2020x-2019}-\sqrt{2019x-2020}\right)+2019\left(x+1\right)=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\right)=0\)
:)
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó
https://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóvhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chóhttps://olm.vn/thanhvien/chibiverycute là con chó
\(2018x^2-\left(m-2019\right)x-2020=0\)
Ta có \(\Delta=b^2-4ac\)
\(=\left[-\left(m-2019\right)\right]^2-4.2018.\left(-2020\right)\)
\(=\left(m-2019\right)^2+4.2018.2020>0\)( vì \(\left(m-2019\right)^2\ge0\forall x\))
Phương trình có 2 nghiệm \(x_1,x_2\) Áp dụng hệ thức Vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\left(1\right)\\x_1.x_2=\frac{-2020}{2018}\left(2\right)\end{cases}}\)
Ta có \(\sqrt{x_1^2+2019}-x_2=\sqrt{x_2^2+2019}-x_2\)
\(\Leftrightarrow\sqrt{x_1^2+2019}-x_2+x_2=\sqrt{x_2^2+2019}\)
\(\Leftrightarrow\sqrt{x_1^2+2019}+0=\sqrt{x_2^2+2019}\)
\(\Leftrightarrow x_1^2+2019=x_2^2+2019\)
\(\Leftrightarrow x_1^2-x_2^2=0\)
\(\Leftrightarrow\left(x_1-x_2\right).\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right).\frac{m-2019}{2018}=0\Rightarrow x_1-x_2=0\left(3\right)\)
Thay (3) vào (!) ta có \(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{m-2019}{4036}\\x_2=\frac{m-2019}{4036}\end{cases}}\)
\(\Rightarrow x_1.x_2=\frac{-2020}{2018}=\frac{-1010}{1009}\)
\(\Leftrightarrow\frac{m-2019}{4036}.\frac{m-2019}{4036}=\frac{-1010}{1009}\)
\(\Leftrightarrow\frac{\left(m-2019\right)^2}{4036^2}=\frac{-1010}{1009}\)
\(\Leftrightarrow\left(m-2019\right)^2=\frac{4036^2.\left(-1010\right)}{1009}\)
\(\Leftrightarrow\left(m-2019\right)^2=-16305440\left(VL\right)\)
Vậy không có m để thỏa mãn bài toán
a) Ta có: \(\Delta'=\left(-m\right)^2+m+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=> pt luôn có 2 nghiệm phân biệt
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Theo bài ra, ta có: \(\hept{\begin{cases}S=2x_1+3x_2+3x_1+2x_2=5\left(x_1+x_2\right)=5.2m=10m\\P=\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6x_1^2+13x_1x_2+6x_2^2=6\left(x_1+x_2\right)^2+x_1x_2\end{cases}}\)
\(\hept{\begin{cases}S=10m\\P=6.\left(2m\right)^2-m-1=24m^2-m-1\end{cases}}\)
Hai nghiệm 2x1 + 3x2 và 3x1 + 2x2 là nghiệm của pt \(x^2-10mx+24m^2-m-1=0\)
b) Theo bài ra, ta có:
\(\left|2x_1+3x_2\right|+\left|3x_1+2x_2\right|=30\)
<=> \(\left(2x_1+3x_2\right)^2+\left(3x_1+2x_2\right)^2+2\left|\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)\right|=900\)
<=> \(\left(2x_1+3x_2+3x_1+2x_2\right)^2-2\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)+2\left|24m^2-m-1\right|=900\)
<=> \(\left(10m\right)^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|=900\)
<=> \(52m^2+2m+2+2\left|24m^2-m-1\right|=900\)
<=> \(\left|24m^2-m-1\right|=449-26m^2-m\)
<=> \(\orbr{\begin{cases}24m^2-m-1=449-26m^2-m\left(đk:m\ge\frac{1+\sqrt{97}}{48}hoặcx\le\frac{1-\sqrt{97}}{48}\right)\\24m^2-m-1=26m^2+m-449\left(đk:\frac{1-\sqrt{97}}{48}\le x\le\frac{1+\sqrt{97}}{48}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}50m^2=1\\2m^2+2m-448=0\end{cases}}\)<=> \(\orbr{\begin{cases}m=\pm\frac{1}{5\sqrt{2}}\\m^2+m-224=0\end{cases}}\) (\(\orbr{\begin{cases}m=\frac{1}{5\sqrt{2}}\left(ktm\right)\\m=-\frac{1}{5\sqrt{2}}\left(tm\right)\end{cases}}\))
<=> \(m^2+m-224=0\)(có 2 nghiệm ko thõa mãn -> tự tính)
a) \(\Delta'=m^2+m+1>0\forall m\). Do đó phương trình cho luôn có hai nghiệm phân biệt
Khi đó, theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Suy ra \(\hept{\begin{cases}5\left(x_1+x_2\right)=10m\\\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6\left(x_1+x_2\right)^2+x_1x_2=24m^2-m-1\end{cases}}\)
Áp dụng định lí Viet đảo ta có được phương trình:
\(X^2-10mX+24m^2-m-1=0\left(1\right)\) nhận \(2x_1+3x_2\) và \(3x_1+2x_2\) làm nghiệm.
b) Để \(\left(1\right)\) có nghiệm thì \(100m^2\ge4\left(24m^2-m-1\right)\Leftrightarrow4m^2+4m+4\ge0\left(đ\right)\)
Ta có \(\left|X_1\right|+\left|X_2\right|=30\Leftrightarrow\left(X_1+X_2\right)^2-2X_1X_2+2\left|X_1X_2\right|-900=0\)
\(\Rightarrow100m^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|+900=0\)
+) Nếu \(24m^2-m-1\ge0\) thì \(100m^2+900=0\Leftrightarrow m=\pm3\)
+) Nếu \(24m^2-m-1< 0\) thì \(4m^2+4m+904=0\)(Vô nghiệm)
Vậy \(m=\pm3.\)
Chứng minh hay giải PT??