Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a. \(\left(x-7\right)^2-x\left(x+25\right)=x^2-14x+49-x^2-25x\)
\(=-39x+49\)
b. \(\left(2x+5\right)^2-2x\left(2x-13\right)=4x^2+20x+25-4x^2+26x\)
\(=46x+25\)
c.\(\left(x+3\right)^2-\left(x+2\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+6x+9-x^2-4x-4-3x^2+3\)
\(=-3x^2+2x+8\)
Nếu bổ sung điều kiện $x,y,z$ không âm thì có thể giải như sau:
$(x-1)^3=x^3-3x^2+3x-1=x(x^2-3x+\frac{9}{4})+\frac{3}{4}x-1$
$=x(x-\frac{3}{2})^2+\frac{3}{4}x-1$
$\geq \frac{3}{4}x-1$
Hoàn toàn tương tự với phần còn lại và cộng theo vế:
$(x-1)^3+(y-1)^3+(z-1)^3\geq \frac{3}{4}(x+y+z)-3=\frac{9}{4}-3=\frac{-3}{4}$
Ta có đpcm.
1) \(a^4-3a^3-6a^3+18a^2-18a^2+54a+27a-81\)
\(=a^3\left(a-3\right)-6a^2\left(a-3\right)-18a\left(a-3\right)+27\left(a-3\right)\)
\(=\left(a-3\right)\left(a^3-6a^2-18a+27\right)\)
\(=\left(a-3\right)\left(a^3+3a^2-9a^2-27a+9a+27\right)\)
\(=\left(a-3\right)\left[a^2\left(a+3\right)-9a\left(a+3\right)+9\left(a+3\right)\right]\)
\(=\left(a-3\right)\left(a+3\right)\left(a^2-9a+9\right)\)
2) Ta có:
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x\left(x+y+z\right)+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz+x^2+xy+xz+x^2\right)-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left(3x^2+3xy+3xz+2yz+y^2+z^2\right)-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left(3x^2+3xy+3xz+2yz+y^2+z^2-y^2+yz-z^2\right)\)
\(=\left(y+z\right)\left(3x^2+3xy+3xz+3yz\right)\)
\(=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=3\left(y+z\right)\left(x+y\right)\left(x+z\right)\)
Lời giải:
Đặt \(\left\{\begin{matrix} x+1=a\\ y+1=b\\ z+1=c\end{matrix}\right.\)
\(\Rightarrow a+b+c=x+y+z+3=0\)
Ta cần chứng minh:
\(a^3+b^3+c^3=3abc\)
Thật vậy, theo khai triển hằng đẳng thức:
\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)
\(=0-3(a+b)(b+c)(c+a)\)
Vì \(a+b+c=0\Rightarrow a+b=-c; b+c=-a; c+a=-b\)
\(\Rightarrow a^3+b^3+c^3=0-3(-c)(-a)(-b)=0-(-3abc)=3abc\)
Do đó ta có đpcm.
Ta chứng minh đẳng thức sau :
Nếu a + b + c = 0 ⇒ a3 + b3 + c3 = 3abc
Ta có : a + b + c = 0 ⇒ a + b = -c
⇒ (a + b)3 = (-c)3 ⇒ a3 + 3a2b + 3ab2 + b3 = -c3
⇒ a3 + b3 + c3 = -3a2b - 3ab2 ⇒ a3 + b3 + c3 = -3ab(a + b)
Thay a + b = -c vào -3ab(a + b) ta được:
-3ab(a + b) = -3ab.(-c)= 3abc
Vậy nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc.
Quay trở lại với bài toán, ta có:
x + y + z = -3 ⇒ x + 1 + y + 1 + z + 1 = -3 + 1 + 1 + 1
⇒ ( x + 1) + (y + 1) + (z + 1) = 0
Áp dụng đẳng thức nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc vào bài toán, ta có :
(x + 1) + ( y + 1) + ( z + 1 ) = 0
⇒ ( x + 1 )3 + (y + 1 )3 + ( z + 1 )3 = 3(x + 1)(y + 1)(z + 1)
⇒ Nếu x + y + z = -3 thì :
(x + 1)3 + ( y + 1 )3 + ( z + 1 )3 = 3(x + 1)( y + 1 )(z + 1)