Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 13 :
Câu a : Ta có :
\(\left(3x+2\right)^2-49\)
\(=\left(3x+2\right)^2-7^2\)
\(=\left(3x+2-7\right)\left(3x+2+7\right)\)
\(=\left(3x-5\right)\left(3x+9\right)\)
\(=3\left(3x-5\right)\left(x+3\right)\)
Vì 3 chia hết cho 3 nên \(3\left(3x-5\right)\left(x+3\right)\) chia hết cho 3 .
\(\Rightarrow\left(3x+2\right)^2-49\) chia hết cho 3 ( đpcm )
Câu b : Ta có :
\(x\left(4x-1\right)^2-81x\)
\(=x\left[\left(4x-1\right)^2-9^2\right]\)
\(=x\left(4x-1-9\right)\left(4x-1+9\right)\)
\(=x\left(4x-10\right)\left(4x+8\right)\)
\(=8x\left(2x-5\right)\left(x+2\right)\)
Vì 8 chia hết cho 8 nên \(8x\left(2x-5\right)\left(x+2\right)\) chia hết cho 8
\(\Rightarrow x\left(4x-1\right)^2-81x\) chia hết cho 8 ( đpcm )
Bài 14 :
Câu a : \(x^2+3x+2=\left(x+1\right)\left(x+2\right)\)
Câu b : \(x^2+x+6\) ( Không phân tích được )
Câu c : \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
Câu d : \(x^2+5x-6=\left(x-1\right)\left(x+6\right)\)
Câu e : \(x^2+4x+3=\left(x+1\right)\left(x+3\right)\)
Câu f : \(x^2-5x+4=\left(x-1\right)\left(x-4\right)\)
a) Tham khảo đây nhé
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
b) Ta có:
\(a^3+5a\)
\(=a^3-a+6a\)
\(=a\left(a^2-1\right)+6a\)
\(=a\left(a-1\right)\left(a+1\right)+6a\)
Vì a(a-1)(a+1) là tích của ba số nguyên liên tiếp nên chia hết chi 6
Và 6a chia hết cho 6
=> Đpcm
vì x^200 chia hết cho 4 , x^100 chia hết cho x^2 và 1 chia hết cho 1 nên x^200+x^100+1 chia hếtcho x^4+x^2+1
**** bn nhe
Đặt x2=ax2=a. Cần chứng minh: a^100+a^50⋮a2+a+1a100+a50⋮a2+a+1
Sử dụng tính chất quen thuộc: a3m+1+a3n+2=a(a3m−1)+a2(a3n−1)−(a2+a+1)⋮a2+a+1