K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 2 2020

a/ \(x^4-4x^2+4+x^2-6x+9=0\)

\(\Leftrightarrow\left(x^2-2\right)^2+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=2\\x=3\end{matrix}\right.\) \(\Rightarrow\) pt vô nghiệm

b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(3x^2+\frac{3}{x^2}-5x-\frac{5}{x}+8=0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)^2-5\left(x+\frac{1}{x}\right)+2=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}-1\right)\left(3x+\frac{3}{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{1}{x}-1=0\\3x+\frac{3}{x}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\3x^2-2x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\frac{1}{x}\right)^2+\frac{3}{4}=0\\3\left(x-\frac{1}{x}\right)^2+\frac{8}{3}=0\end{matrix}\right.\)

Cả 2 pt đều vô nghiệm nên pt đã cho vô nghiệm

NV
20 tháng 2 2020

\(3\left(x^2+\frac{1}{x}\right)^2-3\left(x+\frac{1}{x}\right)-2\left(x+\frac{1}{x}\right)+2=0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)\left(x+\frac{1}{x}-1\right)-2\left(x+\frac{1}{x}-1\right)=0\)

\(\Leftrightarrow\left(3x+\frac{3}{x}-2\right)\left(x+\frac{1}{x}-1\right)=0\)

Mà thực chất ko phải vậy đâu, đặt \(x+\frac{1}{x}=t\Rightarrow3t^2-5t+2=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{3}{2}\end{matrix}\right.\) (casio) rồi thay ngược lại :D

1 tháng 1 2020

Ví dụ cho bạn một bài, còn lại tương tự.

a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)

\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)

Vậy phương trình vô nghiệm.

1 tháng 1 2020

tth_new bạn làm hết ra đc ko. mình đọc không hiểu đc

29 tháng 7 2021

Bài 1 :

a) (3a+4b)3+(3a-4b)3-48a2b2

=27a3+108a2b+144ab2+64b3+27a3-108a2b+144ab2-64b3-48a2b2

=54a3+288ab2-48a2b2

=2a(27a2+144b2-24ab)

b) (5x+2y)(5x-2y)+(2x-y)3+(2x+y)3

=25x2-4y2+8x3-12x2y+6xy2-y3+8x3+12x2y+6xy2+y3

=16x3+25x2-y2+12xy2

=x2(16x+25)-y2(1-12x)

29 tháng 7 2021

Bài 2 :

\(x^2-8x+7=0\)

\(\Leftrightarrow x^2-x-7x+7=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

b)\(x^3-4x^2+3x=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{3}\\x=1\end{cases}}\)

c)Nếu đề đổi thành =1 thì có vẻ hợp lí hơn

d)\(\left(3x-1\right)^3-3\left(3x+2\right)^2+13=0\)

\(\Leftrightarrow27x^3-27x^2+9x-1-3\left(9x^2+12x+4\right)+13=0\)

\(\Leftrightarrow27x^3-27x^2+9x-1-27x^2-36x-12+13=0\)

\(\Leftrightarrow27x^3-54x^2-27x=0\)

\(\Leftrightarrow27x\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}27x=0\\x^2-2x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\-\left(x^2+2x+1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\-\left(x+1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

#H

28 tháng 2 2016

Đây là giải phương trình nhé

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

15 tháng 2 2017

a) Gần giống cho nó giống luôn.

cần thêm (-x^3+2x^2-x) là giống

\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)

\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)

\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)

Nghiệm duy nhất: x=1

25 tháng 1 2019

câu d

1 tháng 10 2017

1, a,\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)

Từ đó suy ra \(x=-\dfrac{5}{2}\) hoặc \(x=3\)

b, \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\left(x-2\right)\left(3x-1\right)=0\)

Từ đó suy ra \(x=2\) hoặc \(x=\dfrac{1}{3}\)

c, \(\left(2x+5\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)

Áp dụng hằng đẳng thức hiệu hai bình phương để suy ra:

\(\Leftrightarrow\left(3x+7\right)\left(x+3\right)=0\)

Từ đó suy ra \(x=-\dfrac{7}{3}\) hoặc \(x=-3\)

d, \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-4x+4-x+2=0\)

\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

Từ đó suy ra \(x=2\) hoặc \(x=3\)

e, \(2x^3+6x^2=x^2+3x\)

\(\Leftrightarrow2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(x\left(2x^2+6x-x-3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\)

Từ đó suy ra \(x=0\) hoặc \(x=\dfrac{1}{2}\) hoặc \(x=-3\)

CHÚC BẠN HỌC GIỎI.................

NV
7 tháng 10 2019

a/ \(x\left(x^2-2x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\pm\sqrt{3}\\\end{matrix}\right.\)

b/ \(\Leftrightarrow2x^3-4x^2+6x-x^2+2x-3=0\)

\(\Leftrightarrow2x\left(x^2-2x+3\right)-\left(x^2-2x+3\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-2x+3\right)=0\)

c/ \(\Leftrightarrow3x^3-15x^2+9x+x^2-5x+3=0\)

\(\Leftrightarrow3x\left(x^2-5x+3\right)+\left(x^2-5x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x^2-5x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=\frac{5\pm\sqrt{13}}{2}\end{matrix}\right.\)

d/ \(x\left(x^2+6x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\pm\sqrt{14}\end{matrix}\right.\)

5 tháng 7 2016

5x^3+4x=x(5x^2+4)=0=> x=0 vi 5x^2+4 khac 0

2) tuong tu x=0

3) tt x=0

cu phan h la ra