\(D=\left(\sqrt{3}-1\right)\sqrt{6+2.\sqrt{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 6 2019

\(A=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\left(5-2\sqrt{6}\right)^2}{9\sqrt{3}-11\sqrt{2}}\)

\(=\left(\sqrt{3}+\sqrt{2}\right)\left(9\sqrt{3}+11\sqrt{3}\right)\left(5-2\sqrt{6}\right)^2\)

\(=\left(49+20\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2=\left(5+2\sqrt{6}\right)^2\left(5-2\sqrt{6}\right)^2=1\)

\(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)

\(=\sqrt{4+5}=3\)

\(A=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=2\)

2 tháng 7 2016

tách bình phương ra

2 tháng 8 2018

Ta có: A = (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)

= (\(\sqrt{3}-1)\)\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+\sqrt{16-8\sqrt{2}+2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+4-\sqrt{2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+4-\sqrt{2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{6+2\sqrt{3}-\sqrt{2}}}}\)

= (\(\sqrt{3}-1\))\(\sqrt{6+\sqrt{24-8\sqrt{6+2\sqrt{3}-\sqrt{2}}}}\)

11 tháng 7 2021

a) \(A=\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\)

\(=\sqrt{5}-2+2\sqrt{2}-\sqrt{5}=2\sqrt{2}-2\)

b) \(B=\left|\sqrt{7}-2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\)

\(=2\sqrt{2}-7+3-2\sqrt{2}=-4\)

c) \(C=\sqrt{9+6\sqrt{2}+2}-\sqrt{9-6\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left(3+\sqrt{2}\right)-\left(3-\sqrt{2}\right)=2\sqrt{2}\)

d) \(D=\sqrt{9+12\sqrt{2}+8}+\sqrt{9-12\sqrt{2}+8}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}=\left(3+2\sqrt{2}\right)-\left(3-2\sqrt{2}\right)=4\sqrt{2}\)