K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

Chứng minh rằng mọi số tự nhiên n thì tích (n+3) . ( n + 6) chia hết cho 2

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

30 tháng 10 2021

Ta có  vì n\(\in\)N

+) TH1 :n là số lẻ=>n+13\(⋮\)2=>n.(n+13)\(⋮\)2

+)TH2 :n là số chẵn =>n\(⋮\)2=>n.(n+13)\(⋮\)2

vậy n.(n+13)\(⋮\)2 với \(\forall\)n\(\in\)N

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 9 2017

ko hiểu

7 tháng 12 2014

n là a
n+13 là b
mà a và b không thể cùng là 2 số chẵn hoặc 2 số lẽ ( 1 số chẵn 1 số lẽ)
=> n.(n+13) là số chẵn với mọi số tự nhiên
mà số chẵn thì chia hết cho 2! 

7 tháng 12 2014

bạn trả lời chính xác thêm không bạn

5 tháng 12 2018

*Nếu n chẵn thì n(n+13) chẵn

=> n(n+13) chia hết cho 2

*Nếu n lẻ => n+13 chẵn

=>n(n+13) chẵn

=> n(n+13) chia hết cho 2

Vậy /............

20 tháng 10 2019

chia hết cho 2 . mk hiểu nhưng ko biết cách giải OK

24 tháng 10 2017

Ta xét 2 trường hợp:

TH1: n là số chẵn

=> n chia hết cho 2

=> n. (n+13) chia hết cho 2

TH2: n là số lẻ

=> n + 13 là số chẵn ( lẻ + lẻ = chẵn)

=> n. (n + 13) chia hết cho 2

Từ 2 trường hợp trên thì ta kết luận n. (n + 13) chia hết  cho 2 với mọi số tự nhiên n.

14 tháng 10 2018

Với mọi số tự nhiên \(n\) thì \(n\) có dạng \(2k\) hoặc \(2k+1\)

+ Nếu \(n=2k\Rightarrow n⋮2\Rightarrow n\left(n+13\right)⋮2\)

+ Nếu \(n=2k+1\Rightarrow x+13=\left(2k+1\right)+13=2k+14=2\left(k+7\right)⋮2\)

\(\Rightarrow n+13⋮2\Rightarrow n\left(n+13\right)⋮2\)

Vậy mọi số tự nhiên \(n\)thì \(n\left(n+13\right)⋮2\)