Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CO:a=2^1+2^2+2^3+2^4+2^5+2^6+..........2^2010+2^2011+2^2012+2^2013+2^2014+2^2015.
a=2.[2+2^2+2^3+2^4+2^5]+............+2^2010.[2+2^2+2^3+2^4+2^5]
a=2.62+..........+2^2010.62
a=62.[2+.........+2^2010]ko chia het cho 7
\(2a=2^3+2^4+...+2^{2021}.\)
\(\Rightarrow a=2^{2021}-4\Rightarrow a+4=2^{2021}=2.\left(2^{1010}\right)^2\)không là số chính phương
\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)
A = 1 + 3 + 5 + 7 + ... + 2n + 1
= \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)
= \(\left(n+1\right).\left(n+1\right)\)
= \(\left(n+1\right)^2\)
=> A là số chính phương (đpcm)
b) \(2+4+6+...+2n\)
= \(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)
= \(n.\left(n+1\right)\)
= \(n^2+n\)
\(\Rightarrow\)B không là số chính phương
Ta có : A có tổng các chữ số bằng 12 ,do đó A chia hết cho 3. (1).
Lại có A có chữ số tận cùng là 008 do đó A chia hết cho 8 (2).
Từ (1) và (2) : ta có A chia hết cho 3 và 8 mà (3;8)=1 nên A chia hết cho 24
Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương
Ta có : A có tổng các chữ số bằng 12 ,do đó A chia hết cho 3. (1).
Lại có A có chữ số tận cùng là 008 do đó A chia hết cho 8 (2).
Từ (1) và (2) : ta có A chia hết cho 3 và 8 mà (3;8)=1 nên A chia hết cho 24
Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.