\(a^2+b^2+c^2\)

= giá trị tuyệt đối của ab+bc+ca

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

cmr a=b=c 

19 tháng 6 2019

#)Giải :

\(a^2+b^2+c^2=\left|ab+bc+ca\right|\)

\(\Leftrightarrow2a^2+2b^2+2c^2=\left|2ab+2bc+2ca\right|\)

\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\left(1\right)\)

Mà \(\left(a-b\right)^2\ge0;\left(a-c\right)^2\ge0;\left(b-c\right)^2\ge0\left(2\right)\)

Từ (1) và (2), chứng minh các a,b,c trong ngoặc bằng nhau, từ đó thu được đpcm

8 tháng 10 2018

Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)

\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)

Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)

\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

21 tháng 10 2018

cáh khác nè:từ

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}=\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

\(\Rightarrow P=\frac{aa+aa+aa}{a^2+a^2+a^2}=1\)

bạn dưới làm sai rồi

P=1 MỚI ĐÚNG

12 tháng 12 2018

\(\frac{ab+bc+ca}{abc}=0\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(A=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

2 tháng 1 2019

Pham Van Hung mình ko hiểu tại sao \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

10 tháng 8 2017

Mn giải giúp e vs huhu