Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xet tam giac ABD va tam giac EBD co :
AB=BE (gt)
Goc B1=goc B2 ( BD la tia phan giac cua goc ABC)
BD chung
Suy ra tam giac ABD = tam giac EBD (c-g-c)
b) Goi I la giao diem cua AE va BD
Xet tam giac BAI va tam giac BEI co :
AB=BE(gt)
Goc B1=goc B2 ( BD la tia phan giac cua goc ABC)
AI chung
Suy ra tam giac BAI = tam giac BEI (c-g-c)
Suy ra goc I1=goc I2 ( hai goc tuong ung)
Ma goc I1+I2=180do ( hai goc ke bu)
Suy ra goc I1=goc I2=180 do:2=90 do (1)
Suy ra BI vuong goc voi AE ( dinh nghia) (2)
Tu (1) va (2) ta suy ra BD la duong trung truc cua AE
c) Tam giac ABD = tam giac EBD (cmt)
Suy ra goc BAD= goc BED ( hai goc tuong ung)
Ma goc BAD =90 do(gt)
Suy ra goc EBD=90 do
Suy ra ED vuong goc voi BC ( dinh nghia )
Ma AH vuong goc voi BC (gt)
Suy ra AH // DE ( theo quan he tu vuong goc den song song)
d) Tam giac ABC co:
Goc ABC + goc BAC +goc C=180 do ( dinh li tong ba goc trong tam giac)
Suy ra goc ABC=180 do -(goc BAC +goc C)
Hay goc ABC =180 do -(90 do+ goc C)(1)
Tam giac EDC co:
Goc EDC+ goc DEC + goc C=180 do ( dinh li tong ba goc trong tam giac)
Suy ra goc EDC=180 do -(goc DEC +goc C)
Hay goc EDC=180 do -(90 do + goc C)(2)
Tu (1) va (2) ta suy ra goc ABC= goc EDC (=180do-(90 do+goc C))
Nho mik nh ban !

e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng

a: Xet ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
b: ΔBAD=ΔBED
nên DA=DE và góc BED=90 độ
mà BA=BE
nên BD là trung trực của AE
c: AH vuông góc với BC
DE vuông góc với BC
Do đó: AH//DE

B A C E D K
a) Xét \(\Delta\)ABD và \(\Delta\)EBD có:
BD chung
\(\widehat{ABD}\) = \(\widehat{EBD}\) (BD là tia phân giác của \(\widehat{ABE}\) )
AB = EB (gt)
=> \(\Delta\)ABD = \(\Delta\)EBD (c.g.c)
b) Gọi giao điểm của BD và AE là K.
Xét \(\Delta\)ABK và \(\Delta\)EBK có:
AB = EB (GT)
\(\widehat{ABK}\) = \(\widehat{EBK}\) (câu a)
BK chung
=> \(\Delta\)ABK = \(\Delta\)EBK (c.g.c) => \(\widehat{AKB}\) = \(\widehat{EKB}\) (2 góc t ư)
và AK = EK (2 cạnh tương ứng)
Do đó K là trung điểm của AE.
mà \(\widehat{AKB}\) + \(\widehat{EKB}\) = 180 độ (kề bù)
=> \(\widehat{AKB}\) = \(\widehat{EKB}\) = 90 độ
Do vậy BK \(\perp\) AE.
Chúc bn học tốt Nguyễn Thị Nhật Liên
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
DO đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên DA=DE
hay D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
c: AH⊥BC
DE⊥BC
Do đó:AH//DE
d: \(\widehat{ABC}+\widehat{C}=90^0\)
\(\widehat{EDC}+\widehat{C}=90^0\)
Do đó: \(\widehat{ABC}=\widehat{EDC}\)
Camon😘