Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của 11a +2b và 18a +5b
=> 11a +2b chia hết cho d và 18a +5b chia hết cho d
=> 18.﴾11a + 2b﴿ chia hết cho d và 11﴾18a + 5b﴿ chia hết cho d
=> 11﴾18a + 5b﴿ - 18.﴾11a + 2b﴿ chia hết cho d
=> 19 b chia hết cho d
=> 19 chia hết cho d hoặc b chia hết cho d ﴾1﴿
=> d là ước của 19 hoặc d là ước của b
Tương tự ta cũng có 5.﴾11a + 2b﴿ chia hết cho d và 2﴾18a + 5b﴿ chia hết cho d
=> 5.﴾11a + 2b﴿ - 2﴾18a + 5b﴿ chia hết cho d
=> 19a chia hết cho d => 19 chia hết cho d hoặc a chia hết cho d => d là ước của 19 hoặc d là ước của a﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra d là ước của 19 hoặc d là ước chung của a và b => d = 19 hoặc d = 1
Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1
Gọi d là Ước chung lớn nhất của 11a + 2b và 18a + 5
=> 11a + 2b chia hết cho d
=> 18a + 5b chia hết cho d
=> 11( 18a + 5b ) - 18( 11a + 2b ) chia hết cho d
=> ( 198a + 55b ) - ( 198a + 36b ) chia hết cho d
=> 19b chia hết cho d ( 1 )
=> 5( 11a + 2b ) - 2( 18a + 5b ) chia hết cho d
=> ( 55a + 10b ) - ( 36a + 10b ) chia hết cho d
=> 19a chia hết cho d ( 2 )
Từ ( 1 ) và ( 2 ) suy ra 19 chia hết cho d
=> d thuộc Ư(19)
=> d thuộc { 1 ; 19 }
Mà d là Ước chung lớn nhất của 11a + 2b và 18a + 5b
=> d = 19.
Lời giải:
Gọi $d=ƯCLN(a,b)$
$\Rightarrow a\vdots d; b\vdots d$
$\Rightarrow a+b\vdots d\Rightarrow p\vdots d$
Mà $p$ là snt nên $d=1$ hoặc $d=p$
Nếu $d=p$ thì $a\vdots p\Rightarrow a\vdots a+b$ (vô lý với mọi $a,b$ là số nguyên dương.
$\Rightarrow d=1$
$\Rightarrow a,b$ là 2 số nguyên tố cùng nhau.
Đặt UCLN(n + 1 , 2n + 3) = d
n + 1 chia hết cho d => 2n + 2 chia hết cho d
=> [(2n + 3) - (2n + 2) ] chia hết cho d
1 chia hết cho d hay d = 1
Vậy (n + 1 , 2n + 3) = 1 (2 số nguyên tố cùng nhau)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 (k \(\in\)N*)
- Nếu p = 3k + 1 thì 5p + 1 = 5(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 \(⋮\) 3 là hợp số (loại)
- Nếu p = 3k + 2 thì 5p + 1 = 5(3k + 2) + 1 = 15k + 10 + 1 = 15k + 11 (thỏa mãn)
=> 7p + 1 = 7(3k + 2) + 1 = 21k + 14 + 1 = 21k + 15 \(⋮\)là hợp số (đpcm)
Gọi ƯCLN(n + 1; 2n + 3) = d
Ta có : n + 1 chia hết cho d => 2(n + 1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1 hoặc -1
=> n + 1 và 2n + 3 nguyên tố cùng nhau
Gọi ƯCLN(n + 1; 2n + 3) là d (d thuộc N*)
=> n + 1 chia hết cho d => 2(n + 1) chia hết cho d
2n + 3 chia hết cho d
=> (2n + 3) - 2(n + 1) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
=> d = 1 (Vì d thuộc N*)
=> ƯCLN(n + 1; 2n + 3) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Ta có A = 1 + 2 +3 + ... + n
= n(n+1) : 2
lại có n(n+1) là tích chẵn
=> n(n+1) \(⋮\)2
=> a \(⋮\)2
=> a chẵn
mặt khác, 2n + 1 \(⋮̸\)2
=> 2n + 1 là số lẻ
=> b lẻ
Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1
=> chúng là 2 số nguyên tố cùng nhau
tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)