K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

\(A=x^3+y^3+x^2z-xyz+zy^2\\ \)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)

\(A=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)

\(A=0\left(x^2-xy+y^2\right)\)

\(A=0\)

19 tháng 7 2017

\(x=y=z=0\)

\(\Rightarrow0^3+0^2.0-0.0.0+0\cdot0^2+0^3=0\)

Bài này kq như thế nhưng mình nghĩ bạn nên xem lại đề :V

7 tháng 9 2019

Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath

4 tháng 6 2015

\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)+\left(x^2y^2z^2-x^2z^3\right)\)
\(P=\left(-x^3\left(y^2-z\right)\right)+\left(xy\left(y^2-z\right)\right)-\left(yz^2\left(y^2-z\right)\right)+\left(x^2z^2\left(y^2-z\right)\right)\)
\(P=\left(-x^3+xy-yz^2+x^2z^2\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2z^2-x^3\right)-\left(yz^2-xy\right)\right)\left(y^2-z\right)\)
\(P=\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(\left(x^2-y\right)\left(z^2-x\right)\right)\left(y^2-z\right)\)
\(P=\left(a.c\right).b\)
\(P=a.b.c\)
Vậy giá trị của P không phụ thuộc vào biến x;y;z (điều cần chứng minh)

3 tháng 6 2015

Mình cũng đang bí câu này nè 

\(=\left(x+z\right)^3-3xz\left(x+z\right)+y\left(x^2+z^2-xz\right)\)

\(=\left(x^2+z^2-xz\right)\left(x+z\right)+y\left(x^2+z^2-xz\right)\)

\(=\left(x+y+z\right)\left(x^2+z^2-xz\right)=0\)

3 tháng 11 2016

Câu 1:

(2x - 3)2 - 4 (x - 3) (x + 3) = (-11)

<=> (4x- 12x +9) - 4 . (X2 - 9) + 11 =0

<=> 4x2 - 12x + 9 - 4x2 + 36 + 11 = 0

<=> -12x + 46 = 0

<=> X = 23/6

3 tháng 11 2016

Câu 2: 

x2 + 4x - y2 + 4y = 0

<=> (x2 - y2) + (4x + 4y) = 0

<=> (x + y) (x - y) + 4 (x + y) = 0

<=> (x+y) (x - y + 4) = 0

16 tháng 8 2019

tham khảo 

https://olm.vn/hoi-dap/detail/6401290031.html

Gửi riêng

16 tháng 8 2019

Ta có:

P=x3(z−y2)+y3(x−z2)+z3(y−x2)+xyz(xyz−1)P=x3(z−y2)+y3(x−z2)+z3(y−x2)+xyz(xyz−1)

=x3(z−y2)+xy3+yz3+x2y2z2−y3z2−z3x2−xyz=x3(z−y2)+xy3+yz3+x2y2z2−y3z2−z3x2−xyz

=x3(z−y2)+(xy3−xyz)+(yz3−y3z2)+(x2y2z2−z3x2)=x3(z−y2)+(xy3−xyz)+(yz3−y3z2)+(x2y2z2−z3x2)

=x3(z−y2)+xy(y2−z)+yz2(z−y2)+x2z2(y2−z)=x3(z−y2)+xy(y2−z)+yz2(z−y2)+x2z2(y2−z)

=(y2−z)(−x3+xy−yz2+x2z2)=(y2−z)(−x3+xy−yz2+x2z2)

=(y2−z)[x2(z2−x)−y(z2−x)]=(y2−z)[x2(z2−x)−y(z2−x)]

=(y2−z)(z2−x)(x2−y)=bca