Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Do \(x+y=1\)nên \(A=1-2xy\)
Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).
- GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được :
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2
Min A = 1/2 tại x = y = 1/2
- GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.
Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)
Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\), \(0\le y\le1\)
\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0
Vậy ....
- GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được :
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2
Min A = 1/2 tại x = y = 1/2
- GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.
Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)
Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\), \(0\le y\le1\)
\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0
Vậy ....
Ta có: \(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
\(=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=\frac{\left(x-1\right)\left(y-1\right)}{xy}\left(1+\frac{1}{xy}+\frac{1}{x}+\frac{1}{y}\right)\)
\(=\frac{xy}{xy}\left(1+\frac{1}{xy}+\frac{1}{xy}\right)\)
\(=1+\frac{2}{xy}\)
Lại có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P=1+\frac{2}{xy}\ge1+8=9\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)
\(=\frac{6}{\left(x+y\right)^2}=6\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Bài làm:
Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)
\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Áp dụng bất đẳng thức Cauchy Schwars ta được:
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)
\(=\frac{4}{1^2}+2=6\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{x^2+y^2}{4}+\frac{1}{x^2+y^2}\geq 2\sqrt{\frac{x^2+y^2}{4}.\frac{1}{x^2+y^2}}=1$
Áp dụng BĐT Bunhiacopxky:
$\frac{3(x^2+y^2)}{4}=\frac{3(1+1)(x^2+y^2)}{8}\geq \frac{3(x+y)^2}{8}=\frac{3.2^2}{8}=\frac{3}{2}$
$\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}$
Vậy $B_{\min}=\frac{5}{2}$
Giá trị này đạt tại $x=y=1$