\(\dfrac{x^2y+xy^2+24x+6y}{xy}\).

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 9 2021

\(B=x+y+\dfrac{6}{x}+\dfrac{24}{y}=\left(\dfrac{3x}{2}+\dfrac{6}{x}\right)+\left(\dfrac{3y}{2}+\dfrac{24}{y}\right)-\dfrac{3}{2}\left(x+y\right)\)

\(B\ge2\sqrt{\dfrac{18x}{2x}}+2\sqrt{\dfrac{72y}{2y}}-\dfrac{3}{2}.6=15\)

\(B_{min}=15\) khi \(\left(x;y\right)=\left(2;4\right)\)

a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)

b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)

c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)

\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)

 

25 tháng 7 2018

\(VT=\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)

\(\ge\dfrac{4}{x^2+2xy+y^2}\)

\(=\dfrac{4}{\left(x+y\right)^2}>4\)

25 tháng 7 2018

Cách khác.

Ta có: \(A=\dfrac{1}{x\left(x+y\right)}+\dfrac{1}{y\left(x+y\right)}=\dfrac{1}{x+y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(=\dfrac{1}{x+y}.\dfrac{x+y}{xy}=\dfrac{1}{xy}\)

Áp dụng BĐT cho các số x,y >0 , ta có:

\(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\dfrac{\left(x+y\right)^2}{4}\ge xy\)

Và x+y \(\le\)1 \(\Rightarrow xy\le\dfrac{1}{4}\) \(\Rightarrow A\ge\dfrac{1}{\dfrac{1}{4}}=4\)

Dấu ''='' xảy ra khi x = y =0,5

15 tháng 6 2018

các bạn ơi giúp mk vs

15 tháng 6 2018

Bài 1. Ta có : \(xy+\dfrac{1}{xy}=16xy-15xy+\dfrac{1}{xy}\)

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(x+y\)\(2\sqrt{xy}\)

\(\left(x+y\right)^2\)\(4xy\)

\(\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\) ≥ xy

⇔ - 15xy ≥ \(\dfrac{1}{4}.\left(-15\right)=\dfrac{-15}{4}\)

CMTT , \(16xy+\dfrac{1}{xy}\)\(2\sqrt{16xy.\dfrac{1}{xy}}=2.\sqrt{16}=8\)

\(16xy+\dfrac{1}{xy}\) - 15xy ≥ \(8-\dfrac{15}{4}=\dfrac{17}{4}\)

16 tháng 5 2018

Câu trả lời trước bị sai bucminh nên làm lại.

Ta có:Q=\(\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}=\dfrac{3x+2y}{6}+\dfrac{6}{3x+2y}\)vì xy=6

Đặt t=3x+2y => t\(\ge2\sqrt{2.y.3.x}\)=12

Theo bđt cô si và t \(\ge\)12 ta được :

Q=\(\left(\dfrac{t}{6}+\dfrac{24}{t}\right)-\dfrac{18}{t}\ge2\sqrt{\dfrac{t}{6}.\dfrac{24}{t}}-\dfrac{18}{t}=\dfrac{5}{2}\)

Đẳng thức xảy ra <=> x=2 và y=3

15 tháng 5 2018

\(Q=\dfrac{2}{x}+\dfrac{3}{y}+\dfrac{6}{3x+2y}\\ Q=\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}\)

Áp dụng bất đẳng thức Cô si cho hai số không âm và thay xy=6 vào ta được

\(Q\ge2\sqrt{\dfrac{2y+3x}{6}\times\dfrac{6}{2y+3x}}\\ Q\ge2\)

Đẳng thức xảy ra <=> \(\left(3x+2y\right)^2\) =36 và xy=6

<=> x=2,y=3

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}\)

\(=\dfrac{1}{6}\sqrt{6}\)

b: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)

\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

Ta có \(B=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+xy+y^2}=\frac{8}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{xy}{x^2+xy+y^2}\)

\(=\frac{8}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}-\frac{1}{9}\)

Áp dụng BĐT AM-GM:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(\frac{x^2+xy+y^2}{9xy}+\frac{xy}{x^2+xy+y^2}\geq 2\sqrt{\frac{1}{9}}=\frac{2}{3}\)

Do đó: \(B\geq \frac{8}{9}.2+\frac{2}{3}-\frac{1}{9}=\frac{7}{3}\Leftrightarrow B_{\min}=\frac{7}{3}\)

Dấu bằng xảy ra khi $x=y$