K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 7 2019
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
20 tháng 7 2019
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
QB
0
ND
0
Q
2
N
4
18 tháng 9 2017
ĐỀ sai rồi bn ơi
neu x ; y > 0 thi ms tim dc max chu
đề sai nha
NT
0
\(\hept{\begin{cases}x=a\\\frac{1}{y}=b\end{cases}}\Rightarrow\hept{\begin{cases}a+b\le1\\A=ab+\frac{1}{ab}\end{cases}}\)Bài toán trở về dạng quen thuộc