\(x^2+5y^2-2xy+2y+2x+2=0\)

Tính giá trị biểu thức: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

hikkkkkkkk làm sắp xong bấm lộn nút mất tiêu

9 tháng 1 2016

x2+5y2-2xy+2y+2x+2=0

<=>(x2-2xy+y2)+(2x-2y)+1+(4y2+4y+1)=0

<=>(x-y)2+2.(x-y)+1+(2y+1)2=0

<=>(x-y+1)2+(2y+1)2=0

<=>x-y=-1 và y=-1/2

<=>x=-1-1/2=-3/2 và y=-1/2

Vậy: \(H=\frac{x^2-7xy+52}{x-y}=\frac{x^2-xy-6xy+52}{-1}=-\left[x^2-6xy+52\right]\)

còn lại bạn chỉ cần thay vào tính thui nha

 

20 tháng 11 2019

(x+y+9+2xy-6x-6y)+(y2+4y+4)=0

(x+y-3)2+(y+2)2=0.vì (x+y-3)2>=0;(y+2)2>=0

suy ra x+y-3=0 và y+2=0

x=5;y=-2

thay x,y vào bt H ta đc H=1

2 tháng 10 2020

x2 + 2y2 + 2xy - 6x - 2y + 13 = 0

<=> ( x2 + 2xy + y2 - 6x - 6y + 9 ) + ( y2 + 4y + 4 ) = 0

<=> [ ( x2 + 2xy + y2 ) - ( 6x + 6y ) + 9 ] + ( y + 2 )2 = 0

<=> [ ( x + y )2 - 2( x + y ).3 + 32 ] + ( y + 2 )2 = 0

<=> ( x + y - 3 )2 + ( y + 2 )2 = 0

Ta có : \(\hept{\begin{cases}\left(x+y-3\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra <=> x = 5 ; y = -2

Thế x = 5 ; y = -2 vào A ta được :

\(A=\frac{5^2-7\cdot5\cdot\left(-2\right)+52}{5-\left(-2\right)}=\frac{25+70+52}{7}=\frac{147}{7}=21\)

21 tháng 4 2017

\(x^2+2y^2+2xy-2x-6y+5=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(2x+2y\right)+1+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-2\right)^2=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x+y-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Khi đó \(P=\dfrac{\left(-1\right)^2-7\cdot\left(-1\right)\cdot2+51}{-1-2}=-22\)

16 tháng 5 2019

\(2xy+2x-5z=0\Leftrightarrow z=\frac{2xy+2x}{5}\)

Sau đấy bn thay z vào là ra 

3 tháng 11 2020

Ta có: \(2xy+2x-5z=0\Rightarrow z=\frac{2xy+2x}{5}\)

Thay \(z=\frac{2xy+2x}{5}\)vào A, ta được: \(A=x^2+2y^2+2xy+\frac{8}{5}y+\frac{2xy+2x}{5}+2=x^2+2y^2+\frac{12}{5}xy+\frac{8}{5}y+\frac{2}{5}x+2\)\(=\left(x^2+\frac{12}{5}xy+\frac{36}{25}y^2\right)+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}+\left(\frac{14}{25}y^2+\frac{28}{25}y+\frac{14}{25}\right)+\frac{7}{5}\)\(=\left[\left(x+\frac{6}{5}y\right)^2+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}\right]+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\)\(=\left(x+\frac{6}{5}y+\frac{1}{5}\right)^2+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\ge\frac{7}{5}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+\frac{6}{5}y+\frac{1}{5}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\Rightarrow z=0\)

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

8 tháng 12 2019

\(5x^2+5y^2+8xy+2x-2y+2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+4\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+4\left(x+y\right)^2=0\)

\(\Rightarrow x=-1;y=1\)

Khi đó:

\(M=\left(1-1\right)^{2010}+\left(2-1\right)^{2011}+\left(1-1\right)^{2012}\)

\(=1\)

\(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)

\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y+z\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\)\(x=-y=z=1\)

\(\Rightarrow\)\(A=x^{2018}+y^{2018}+z^{2018}=1^{2018}+\left(-1\right)^{2018}+1^{2018}=3\)

...