Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0
--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0
--> (x+y+2)^2 + y^2 = 1
-->(x+y+2)^2 <= 1 ( vì y^2 >=1)
--> -1 <= x+y+2 <=1
--> 2015 <= x+y+2018 <= 2017
hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3
Q<=2017, dau bang xay ra khi x+y+2=1 --> x+y=-1
Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3
giá trị lớn nhất của Q là 2017 khi x+y=-1
\(x^2+2xy+4x+4y+3y^2+3=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+4+2y^2-1=0\)
\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4=1-2y^2\)
\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)
Do \(VP=1-2y^2\le1\forall y\) nên \(VT=\left(x+y+2\right)^2\le1\)
\(\Leftrightarrow-1\le x+y+2\le1\)
\(\Leftrightarrow-1+2015\le x+y+2+2015\le1+2015\)
\(\Leftrightarrow2014\le x+y+2017\le2016\)
Hay \(2014\le B\le2016\)
Bài này có thể áp dụng Bunhiacopxki nhưng đang lười nghĩ nên thôi vậy...
\(x+4y=1\Leftrightarrow x=1-4y\)
Khi đó : \(A=\left(1-4y\right)^2+4y^2\)
\(\Leftrightarrow A=16y^2-8y+1+4y^2\)
\(\Leftrightarrow A=20y^2-8y+1\)
\(\Leftrightarrow A=20\left(y^2-\frac{2}{5}y+\frac{1}{20}\right)\)
\(\Leftrightarrow A=20\left(y^2-2\cdot y\cdot\frac{1}{5}+\frac{1}{25}+\frac{1}{100}\right)\)
\(\Leftrightarrow A=20\left[\left(y-\frac{1}{5}\right)^2+\frac{1}{100}\right]\)
\(\Leftrightarrow A=20\left(y-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1-4y\\y=\frac{1}{5}\end{matrix}\right.\Leftrightarrow x=y=\frac{1}{5}\)
x=2-4y thay vào P ta có: (2-4y)2 + 4y2=20y2-16y + 4 >=4/5
MinP=4/5 khi x=2/5