Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{x\sqrt{y}+y\sqrt{x}}{2\sqrt{xy}}-\frac{x+y}{2}=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\)
Cần chứng minh : \(\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\le\frac{1}{4}\Leftrightarrow\sqrt{x}+\sqrt{y}-x-y\le\frac{1}{2}\Leftrightarrow2\sqrt{x}+2\sqrt{y}-2x-2y\le1\)
\(\Leftrightarrow2x+2y-2\sqrt{x}-2\sqrt{y}+1\ge0\)\(\Leftrightarrow\left(\sqrt{2x}-\frac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2y}-\frac{1}{\sqrt{2}}\right)^2\ge0\)
Vì BĐT cuối luôn đúng nên BĐT cần chứng minh luôn đúng khi x = y = \(\frac{1}{4}\)
\(VT=\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{\sqrt{2xy\left(x+y\right)}}{x+y}-\frac{x+y}{2}\)
\(\le\frac{\left(x+y\right)\sqrt{\frac{x+y}{2}}}{x+y}-\frac{x+y}{2}\) . Cm : \(\sqrt{\frac{x+y}{2}}-\frac{x+y}{2}\le\frac{1}{4}\)
Đặt \(x+y=t>0\)thì :
\(\sqrt{\frac{t}{2}}-\frac{t}{2}\le\frac{1}{4}\Leftrightarrow-\frac{1}{4}\left(\sqrt{2t}-1\right)^2\le0\) ( đúng )
Chúc bạn học tốt !!!
Đặt \(\frac{1}{1+x}=a\);\(\frac{1}{1+y}=b\);\(\frac{1}{1+y}=c\). Lúc đó a + b + c = 1
Ta có: \(a=\frac{1}{1+x}\Rightarrow x=\frac{1-a}{a}=\frac{\left(a+b+c\right)-a}{a}=\frac{b+c}{a}\)(Do a + b + c = 1)
Tương tự ta có: \(y=\frac{c+a}{b};z=\frac{a+b}{c}\)
\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\Leftrightarrow\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{xy}}\le\frac{3}{2}\)
Ta đi chứng minh \(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)\(\le\frac{3}{2}\)
\(VT\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}\right)\)
\(=\frac{1}{2}.3=\frac{3}{2}\)*đúng*
Vậy \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)
Đẳng thức xảy ra khi x = y = z = 2
Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)
Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))
làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)
vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)
[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)
dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)
a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:
\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)
\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)
\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)
Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)
Mà \(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)
\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)
Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Ta có :
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\) ( Sử dụng phương pháp véctơ )
Do đó :
\(VT^2=\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)\(=81\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)\(-80\left(x+y+z\right)^2\ge18\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-80\left(x+y+z\right)^2\)\(\ge162-80=82\)
\(\Rightarrow VT\ge\sqrt{82}\)
Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)
Cách khác
Áp dụng bđt bunhiacopski có:
\(\left(1.x+9.\frac{1}{x}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{x^2}\right)\)
=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{\left(x+\frac{9}{x}\right)}{\sqrt{82}}\)
CM tương tự: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{\left(y+\frac{9}{y}\right)}{\sqrt{82}}\)
\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{\left(z+\frac{9}{z}\right)}{\sqrt{82}}\)
Cộng vế với vế =>A= \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\frac{\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)}{\sqrt{82}}\)
Áp dụng svac-xơ vào VP có A \(\ge\frac{\left(x+y+z+\frac{81}{x+y+z}\right)}{\sqrt{82}}=\frac{\left(x+y+z+\frac{1}{x+y+z}+\frac{80}{x+y+z}\right)}{\sqrt{82}}\ge\frac{\left(2+80\right)}{\sqrt{82}}\)
<=> \(A\ge\sqrt{82}\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Áp dụng bđt bunhiacopxki, ta có:
\(\left(x^2+\frac{1}{x^2}\right)\left(1+16\right)\ge\left(x+\frac{4}{x}\right)^2\) => \(x^2+\frac{1}{x^2}\ge\frac{\left(x+\frac{4}{x}\right)^2}{17}\)
=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{x+\frac{4}{x}}{\sqrt{17}}=\frac{x}{\sqrt{17}}+\frac{4}{x\sqrt{17}}\)
CMTT: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{y}{\sqrt{17}}+\frac{4}{\sqrt{17}y}\)
\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{z}{\sqrt{17}}+\frac{4}{\sqrt{17}z}\)
=> A \(\ge\frac{x+y+z}{\sqrt{17}}+\frac{4}{\sqrt{17}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x+y+z}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}\)(bđt: 1/a + 1/b + 1/c > = 9/(a+b+c)
=> A \(\ge\frac{16\left(x+y+z\right)}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}-\frac{15\left(x+y+z\right)}{\sqrt{17}}\)
A \(\ge2\sqrt{\frac{16\left(x+y+z\right)}{\sqrt{17}}\cdot\frac{36}{\sqrt{17}\left(x+y+z\right)}}-\frac{15\cdot\frac{3}{2}}{\sqrt{17}}\)(Bđt cosi + bđt: x + y + z < = 3/2)
A \(\ge\frac{48}{\sqrt{17}}-\frac{45}{2\sqrt{17}}=\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra <=> x = y= z = 1/2
Vậy MinA = \(\frac{3\sqrt{17}}{2}\) <=> x = y = z = 1/2
4a) Sử dụng bất đẳng thức AM-GM ta có :
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\times\frac{y}{x}}=2\)
Đẳng thức xảy ra khi x = y > 0
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{1}{4}\)
Ta có:
\(VT\le\frac{x\sqrt{y}+y\sqrt{x}}{2\sqrt{xy}}-\frac{x+y}{2}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\)
Giờ ta chỉ cần chứng minh
\(\frac{\sqrt{x}+\sqrt{y}}{2}-\frac{x+y}{2}\le\frac{1}{4}\)
\(\Leftrightarrow2x+2y-2\sqrt{x}-2\sqrt{y}+1\ge0\)
\(\Leftrightarrow\left(2x-2\sqrt{x}+\frac{1}{2}\right)+\left(2y-2\sqrt{y}+\frac{1}{2}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{2x}-\frac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2y}-\frac{1}{\sqrt{2}}\right)^2\ge0\)(đúng)
Dấu = xảy ra khi \(x=y=\frac{1}{4}\)