K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

bn zeno  đề là x^2+y^2 hay x+y ??

13 tháng 9 2018

7a có: \(\frac{1}{2}=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow x+y\le1\)

Áp dụng BD7 Cauchy-SChwarz 7a có: 

 \(V7=\frac{x}{y+1}+\frac{y}{x+1}=x-\frac{xy}{y+1}+y-\frac{xy}{x+1}\)

\(\le x+y-\frac{\left(x^2+y^2\right)}{2}\left(\frac{1}{y+1}+\frac{1}{x+1}\right)\)

\(\le1-\frac{\frac{1}{2}}{2}\cdot\frac{4}{1+2}=\frac{2}{3}=VP\)

Dấu "='' khi \(x=y=\frac{1}{4}\)

4 tháng 2 2020

Dễ thây \(x+y\ge0\)ta có

\(x+y\ge x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow x+y\le2\)

19 tháng 11 2015

tick mình xong mình giải cho

19 tháng 5 2019

Bài này dùng bđt Cô-si và cũng phải để ý đẳng thức xảy ra khi nào

Có: \(\sqrt{xy}\le\frac{x+y}{2}=2\Rightarrow xy\le4\)(Đẳng thức xảy ra khi x=y)

Lại có: \(x^2y^2\left(x^2+y^2\right)\le128\Leftrightarrow2xy\cdot2xy\cdot\left(x^2+y^2\right)\le512\)(*)    
(phân tích để khi dùng bdt cô-si thì x^2 + y^2 = 2xy <=> x=y)


Áp dụng bdt cô-si ta có: \(2xy\cdot2xy\cdot\left(x^2+y^2\right)\le\frac{1}{27}\left(x^2+y^2+2xy+2xy\right)^3\)
\(\le\frac{1}{27}\left[\left(x+y\right)^2+2\cdot4\right]^3=\frac{1}{27}\left(16+8\right)^3=512\)
Do đó (*) đúng. Vậy \(x^2y^2\left(x^2+y^2\right)\le128\)

1 tháng 2 2020

Còn lười suy nghĩ thì em nghĩ có thể sử dụng cách trâu bò nhất!

BĐT\(\Leftrightarrow32x^2y^2\left(x^2+y^2\right)\le\left(x+y\right)^6\)

\(VP-VT=\left(x-y\right)^2\left[\left(x^2-y^2\right)^2+8xy\left(x^2+y^2\right)\right]\ge0\)