\(\frac{1}{x}+\frac{1}{y}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

Chứng minh Cái này :

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với \(x;y>0\)

Quy đòng chuyển vế sẽ tạo thành lũy thừa bậc 2

29 tháng 4 2018

Ta có :

\(B=\left(1-\frac{x}{z}\right)\left(1+\frac{x}{y}\right)\left(1-\frac{y}{z}\right)=\frac{x-z}{x}\) \(.\frac{x+y}{y}.\frac{z-y}{z}\)

\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\)Thay vào B ta được:

\(B=\frac{-y}{x}\cdot\frac{z}{y}\cdot\frac{x}{z}=\frac{-y\cdot z\cdot x}{x\cdot y\cdot z}=-1\)

cô si cho 3 số đi bạn... min = 3

\(x-y-z=0\)

nên \(\left\{{}\begin{matrix}x=y+z\\y=x-z\\z=x-y\end{matrix}\right.\)

\(B=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y}{x}\cdot\dfrac{-z}{y}\cdot\dfrac{x}{z}=-1\)

24 tháng 4 2019

ta có: x-y-z=0

=> x=y+z

    y=x-z

    -z=y-x

thay vào biểu thức B ta có: \(B=\left(1-\frac{z}{x}\right)\)\(\left(1-\frac{x}{y}\right)\)\(\left(1+\frac{y}{z}\right)\)

\(\left(\frac{x-z}{x}\right)\)\(\left(\frac{y-x}{y}\right)\)\(\left(\frac{z+y}{z}\right)\)=\(\frac{y}{x}\).\(\frac{-z}{y}\).\(\frac{x}{z}\)=-1

vậy B=-1

24 tháng 4 2019

THANKS YOU

2 tháng 5 2018

Ta có : 

\(x-y-z=0\)

\(\Rightarrow\)\(\hept{\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}}\)

Lại có : 

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\) ( hình như cái cuối là dấu "+" ) 

\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

Thay \(x-z=y\)\(;\)\(y-x=-z\) và \(z+y=x\) vào \(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\) ta được : 

\(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)

\(B=\frac{-xyz}{xyz}\)

\(B=-1\)

Vậy \(B=-1\)

Chúc bạn học tốt ~ 

10 tháng 4 2020

jiuhbvhg

24 tháng 3 2019

Ta có: x + y + z = 0

=> x + y = -z

     x + z = -y

   y + z = -x

Khi đó, ta có: C = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

                       C = \(\left(\frac{y+x}{y}\right)\left(\frac{z+y}{z}\right)\left(\frac{x+z}{x}\right)\)

                       C = \(\frac{-z}{y}.\frac{-x}{z}\frac{-y}{x}\)

                        C=  -1

24 tháng 3 2019

Bạn so sánh giúp minh \(\frac{2016^{2017}+1}{2016^{2016}+1}\)  và \(\frac{2^{2016}+1}{2^{2015}+1}\)