Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>25x=35^2=1225
=>x=49
b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
=>x+5=4
=>x=-1
\(xy\le\dfrac{x^2+y^2}{2}=\dfrac{2}{2}=1\) :v
b thiếu đề
@To:Tú: theo BĐT \(x^2+y^2\ge2xy\Rightarrow2xy\le x^2+y^2\Rightarrow xy\le\dfrac{x^2+y^2}{2}\) Ok :v
a: \(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\cdot\left(-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)
b: Để C<-1 thì C+1<0
=>-3 căn x+2 căn x+4<0
=>-căn x<-4
=>x>16
c: \(C+\dfrac{3}{2}=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}+\dfrac{3}{2}=\dfrac{-3\sqrt{x}+3\sqrt{x}+6}{2\left(\sqrt{x}+2\right)}=\dfrac{3}{\sqrt{x}+2}>0\)
=>C>-3/2
\(a)A=\dfrac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\dfrac{2+\sqrt{8}}{1+\sqrt{2}}\\ A=\dfrac{\left(\sqrt{3}-\sqrt{6}\right)\left(1+\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}-\dfrac{\left(2+\sqrt{8}\right)\left(1-\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}\\ A=-\left(\sqrt{3}+\sqrt{6}-\sqrt{6}-2\sqrt{3}\right)+2-2\sqrt{2}+2\sqrt{2}-4\\ A=\sqrt{3}-2\)
\(b)B=\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\\ B=\left[\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\\ B=\dfrac{\sqrt{x}+2-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\left(\sqrt{x}+2\right)\\ B=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\\ B=\dfrac{4}{x-4}\)
1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)
\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)
2) Để \(P=2\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)
\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)
\(\Leftrightarrow6\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{4}{9}\)
Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)
3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)
Thay \(x=\frac{1}{4}\)vào P, ta được :
\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)
4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)
\(\Leftrightarrow9x-3\sqrt{x}-6=0\)
\(\Leftrightarrow3x-\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=3x-2\)
\(\Leftrightarrow x=9x^2-12x+4\)
\(\Leftrightarrow9x^2-13x+4=0\)
\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)
Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\); \(x=1\left(tm\right)\)
Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)
5) Để biểu thức nhận giá trị nguyên
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)
\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)
\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)
\(\Leftrightarrow8⋮2-\sqrt{x}\)
\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)
Ta loại các giá trị < 0
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)
\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
\(\)
BẠn cm BĐT :
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) với a ; b ; d c > 0
(*) ÁP dụng BĐT ta có
T = \(\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}=\sqrt{1+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)
Xét biểu thức \(\frac{1}{x^2}+\frac{1}{y}=\frac{x^2+y}{x^2y}=\frac{1}{x^2y}\)
TA có \(\sqrt{x^2y}\le\frac{x^2+y}{2}=\frac{1}{2}\Leftrightarrow x^2y\le\frac{1}{4}\) =>\(\frac{1}{x^2y}\ge4\Rightarrow\) \(\frac{1}{x^2}+\frac{1}{y}\ge4\)
=> \(T\ge\sqrt{1+4^2}=\sqrt{17}\)
dấu '' = '' xảy ra khi \(\int^{x^2=y}_{\frac{x^4}{y^2}=\frac{\frac{1}{x^4}}{\frac{1}{y^2}}}\Leftrightarrow\int^{x^2=y}_{\frac{x^4}{y^2}=\frac{y^2}{x^4}}\Leftrightarrow\int^{x^2=y}_{x^2+y=1}\Rightarrow x=\frac{\sqrt{2}}{2};y=\frac{1}{2}\)
Vậy min T = 17 tại x = .. ; y = ...
1)
Điều kiện: \(x\geq \frac{-1}{2}\)
Bình phương hai vế:
\(x^2+4=(2x+1)^2=4x^2+4x+1\)
\(\Leftrightarrow 3x^2+4x-3=0\)
\(\Leftrightarrow x=\frac{-2\pm \sqrt{13}}{3}\)
Do \(x\geq -\frac{1}{2}\Rightarrow x=\frac{-2+\sqrt{13}}{3}\) là nghiệm duy nhất của pt.
2)
a) \(x^2+x+12\sqrt{x+1}=36\) (ĐK: \(x\geq -1\) )
\(\Leftrightarrow (x^2+x-12)+12(\sqrt{x+1}-2)=0\)
\(\Leftrightarrow (x-3)(x+4)+\frac{12(x-3)}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow (x-3)\left[x+4+\frac{12}{\sqrt{x+1}+2}\right]=0\)
Do \(x\geq -1\Rightarrow x+4+\frac{12}{\sqrt{x+1}+2}\geq 3+\frac{12}{\sqrt{x+1}+2}>0\)
Do đó \(x-3=0\Leftrightarrow x=3\) (thỏa mãn)
Vậy pt có nghiệm x=3
b) Đặt \(\left\{\begin{matrix} \sqrt{x^2+7}=a\\ x+4=b\end{matrix}\right.\)
PT tương đương:
\(x^2+7+4(x+4)-16=(x+4)\sqrt{x^2+7}\)
\(\Leftrightarrow a^2+4b-16=ab\)
\(\Leftrightarrow (a-4)(a+4)-b(a-4)=0\)
\(\Leftrightarrow (a-4)(a+4-b)=0\)
+ Nếu \(a-4=0\Leftrightarrow \sqrt{x^2+7}=4\Leftrightarrow x^2=9\Leftrightarrow x=\pm 3\) (thỏa mãn)
+ Nếu \(a+4-b=0\Leftrightarrow a=b-4\)
\(\Leftrightarrow \sqrt{x^2+7}=x\)
\(\Rightarrow x\geq 0\). Bình phương hai vế thu được: \(x^2+7=x^2\Leftrightarrow 7=0\) (vô lý)
Vậy pt có nghiệm \(x=\pm 3\)
Câu 3:
Ta có \(M=\frac{x^2+2000x+196}{x}\)
\(\Leftrightarrow M=x+2000+\frac{196}{x}\)
Áp dụng BĐT AM-GM ta có: \(x+\frac{196}{x}\geq 2\sqrt{196}=28\)
\(\Rightarrow M=x+\frac{196}{x}+2000\geq 28+2000=2028\)
Vậy M (min) =2028. Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{196}{x}\\ x>0\end{matrix}\right.\Rightarrow x=14\)
a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+\left|x-3\right|\)
\(=x+3-\left(x-3\right)\)
\(=x+3-x+3\)
\(=6\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)
\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
\(=x+2-\left(-x\right)\)
\(=x+2+x\)
\(=2x+2=2\left(x+1\right)\)
c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)
\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)
\(=\frac{\left|x-1\right|}{x-1}\)
\(=\frac{x-1}{x-1}=1\)
d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)
\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)
\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)
\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)
\(=\left|x-2\right|-1\)
\(=-\left(x-2\right)-1\)
\(=-x+2-1\)
\(=-x+1=-\left(x-1\right)\)