K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

  Ta có : 
1 + x = 1 + (b^2 + c^2 - a^2)/2bc = [(b + c)^2 - a^2]/2bc 
1 + y = 1 + [a*2 - (b - c)^2]/[(b + c)^2 - a^2] = 4bc/[(b + c)^2 - a^2] 
Vậy : P = x + y + xy = (1 + x)(1 + y) - 1 = 2 - 1 = 1

5 tháng 10 2017

  Ta có : 
1 + x = 1 + (b^2 + c^2 - a^2)/2bc = [(b + c)^2 - a^2]/2bc 
1 + y = 1 + [a*2 - (b - c)^2]/[(b + c)^2 - a^2] = 4bc/[(b + c)^2 - a^2] 
Vậy : P = x + y + xy = (1 + x)(1 + y) - 1 = 2 - 1 = 1

19 tháng 9 2017

Linh_Men

2 tháng 10 2017

a)\(M=\text{[}x^3-3xy\left(x-y\right)-y^3\text{]}-\left(x^2-2xy+y^2\right)\)

\(M=\left(x-y\right)^3-\left(x-y\right)^2\)

\(\Rightarrow M=7^3-7^2\)

\(M=294\)

19 tháng 9 2017

2.a là x=0 , x=-1, x=-2
2.b là x=2/3 , x=-5

20 tháng 9 2017

Trả lời tội ghê đó bạn nhưng mk gửi một bài mà sao bạn trả lời một câu vậy bạn nhưng dù sao vẫn cảm on nha

14 tháng 12 2016

Đkxđ : \(x+y\ne0\)

\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)

\(\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(\Rightarrow x-y=y\)

\(\Rightarrow x=2y\)

Thay x = 2y vào M có :

\(M=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Vậy ...

AH
Akai Haruma
Giáo viên
26 tháng 10 2019

Bài 1:

\(x^2+\frac{1}{x^2}=2\Leftrightarrow (x+\frac{1}{x})^2-2.x.\frac{1}{x}=7\Leftrightarrow (x+\frac{1}{x})^2=9\)

\(\Rightarrow x+\frac{1}{x}=3\) (do \(x>0\rightarrow x+\frac{1}{x}>0\))

\(\Rightarrow (x+\frac{1}{x})^3=27\)

\(\Leftrightarrow x^3+\frac{1}{x^3}+3x.\frac{1}{x}(x+\frac{1}{x})=27\)

\(\Leftrightarrow x^3+\frac{1}{x^3}+3.3=27\Leftrightarrow x^3+\frac{1}{x^3}=18\)

Do đó:

\(x^5+\frac{1}{x^5}=(x^2+\frac{1}{x^2})(x^3+\frac{1}{x^3})-(x+\frac{1}{x})=7.18-3=123\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2019

Bài 2:

Ta có:

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow 2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow (x^2+y^2-2xy)+(y^2+z^2-2yz)+(z^2+x^2-2xz)=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z\in\mathbb{R}$

Do đó để $(x-y)^2+(y-z)^2+(z-x)^2=0$ thì $(x-y)^2=(y-z)^2=(z-x)^2=0$

Hay $x=y=z$

Thay vào điều kiện thứ 2:

$\Rightarrow x^{2016}+x^{2016}+x^{2016}=3^{2017}$

$\Leftrightarrow 3.x^{2016}=3^{2017}$

$\Leftrightarrow $x=3$

$\Rightarrow y=z=x=3$

Vậy $x=y=z=3$