\(P=\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2021

Ta có x3 - y3 + z3 + 3xyz

= (x - y)3 + 3xy(x - y) + z3 + 3xyz

= [(x - y)3 + z3] + [3xy(x - y) + 3xyz]

= (x - y + z)[(x - y)2 - (x - y)z + z2] + 3xy(x - y + z)

= (x - y + z)[x2 - 2xy + y2 - xz + yz + z2] + 3xy(x - y + z)

= (x - y + z)(x2 + y2 + z2 + xy - xz + yz) 

= 2(x2 + y2 + z2 + xy - xz + yz) (vì x - y+ z = 2)

Lại có (x + y)2 + (y + z)2 + (z - x)2

= x2 + 2xy + y2 + y2 + 2yz + z2 + z2 - 2xz + z2

= 2x2 + 2y2 + 2z2 + 2xy + 2yz - 2xz

= 2(x2 + y2 + z2 + xy - xz + yz)

Khi đó P = \(\frac{2\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy-xz+yz\right)}=1\)

28 tháng 11 2019

Biến đổi tương đương giả thiết: \(\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\) (xét hiệu 2 vế, cái đẳng thức này quen thuộc nên bạn tự biến đổi)

Do x, y, z dương nên x + y + z > 0. Do đó để đẳng thức trong giả thiết xảy ra thì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\). Thay y, z bởi x vào M ta được M = 3.

Mình nêu hướng làm thôi!

26 tháng 2 2017

Dat  (x-y)2+(y-z)2+(x-z)2=A

=(x+y)3+z3-3x2y-3xy2-3xyz / A

=(x+y+z).(x2+2xy+y2-xy-yz+z2)-3xy(x+y+z) / A

=(x+y+z).(x2+y2+z2-xy-yz-xz) /A

=2(x+y+z).(x2+y2+z2-xy-yz-xz) /2A 

=(x+y+z)[ (x2-2xy+y2)+(y2-2yz+z2)+(x2-2xz+z2) / 2A

=(x+y+z).[ (x-y}2+(y-z)2+(x-z)] /2A

=(x+y+z). A /2A

=x+y+z /2

26 tháng 2 2017

kimh thế

17 tháng 11 2016

\(x^3+y^3+z^3=3xyz\)

\(x^3+y^3+z^3-3xyz=0\)

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)

\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=0\times2\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)

\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)

\(\left[\begin{array}{nghiempt}x-y=0\\x-z=0\\y-z=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=y\\x=z\\y=z\end{array}\right.\)

x = y = z

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)

\(=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)\)

\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2^3\)

\(=8\)

1 tháng 3 2017

Làm sao để ra được dòng thứ 3 ak??

19 tháng 2 2020

sai đề sửa \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=\frac{1}{2}\left(x+y+z\right)\left(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right)\)Vậy B=1/2(x+y+z)