Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có x + y = 25
=> (x + y)2 = 625
=> x2 + y2 + 2xy = 625
=> x2 + y2 + 10 = 625
=> x2 +y2 = 615
b) Ta có x + y = 3
=> (x + y)3 = 27
=> x3 + 3x2y + 3xy2 + y3 = 27
=> x3 + y3 + 3xy(x + y) = 27
=> x3 + y3 + 9xy = 27
Lại có x + y = 3
=> (x + y)2 = 9
=> x2 + y2 + 2xy = 9
=> 2xy = 4
=> xy = 2
Khi đó x3 + y3 + 9xy + 27
=> x3 + y3 + 18 = 27
=> x3 + y3 = 9
c) Ta có x - y = 5
=> (x - y)2 = 25
=> x2 + y2 - 2xy = 25
=> 2xy = -10
=> xy = -5
Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50
Bài 4.
a) x2 + y2 = x2 + 2xy + y2 - 2xy
= ( x2 + 2xy + y2 ) - 2xy
= ( x + y )2 - 2xy
= 252 - 2.136
= 625 - 272
= 353
b) x + y = 3
⇔ ( x + y )2 = 9
⇔ x2 + 2xy + y2 = 9
⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )
⇔ 2xy = 4
⇔ xy = 2
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 33 - 3.2.3
= 27 - 18
= 9
Có: \(x-y=5\Rightarrow\left(x-y\right)^2=25\Rightarrow x^2-2xy+y^2=25\)
Mà: \(x^2+y^2=15\)
\(\Rightarrow15-2xy=25\)
\(\Rightarrow2xy=-10\Rightarrow xy=-5\)
Lại có: \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=5.\left(15-5\right)=5.10=50\)
Vậy:...
( x- y)^2 = 5^2
=> x^2 - 2xy + y^2 = 25
=> 15 - 2xy = 25
=> 2xy = -10
=> xy = -5
x^3 - y^3 = ( x- y)(x^2+xy+y^2) = 5.(15 - 5 ) = 5.10 = 50
Ta có: (x-y)2= 52
=> x2-2xy+y2=25
=>xy= -5
Lại có: x3- y3= (x-y)( x2+xy+y2) = 5. ( 15-5)= 50
a)
Ta có :
\(x+y=3\)
\(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\Leftrightarrow2xy=4\Rightarrow xy=2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.\left(5-2\right)=9\)
b)
Ta có :
\(x-y=5\)
\(x^2+y^2=15\Leftrightarrow\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\Rightarrow xy=-5\)
=> \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(5\right)\left(15+-5\right)=50\)
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
1, Ta có \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc\)
\(\Rightarrow\) \(a^3+b^3+c^3=0.\left(a^2+b^2+c^2-ab-bc-ac\right)+3.\left(-2\right)=-6\)
x3-y3=15
x^3 - y^3= (x-y) . ( x^2 + xy + y^2)
= 5. (15 + xy)
= 75 + 5xy