Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)
Áp dụng t/c dãy tỉ số bằng nhau ,ta được:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)
Do đó: x=4
y=6
z=9
Vậy......
b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)
Vậy
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Ta có: x-2y+3z=14
Áp dụng tính chất của dãy tỉ só bằng nhau, ta được:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{14-6}{8}=\frac{8}{8}=1\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x-1}{2}=1\\\frac{2y-4}{6}=1\\\frac{3z-9}{12}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=2\\2y-4=6\\3z-9=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\2y=10\\3z=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)
Vậy: (x,y,z)=(3;5;7)
a) \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x-2y+z}{5-6+4}=\frac{6}{3}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{5}=2\\\frac{2y}{6}=2\\\frac{z}{4}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5.2\\2y=6.2\\z=4.2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=8\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)=\left(10,6,8\right)\)
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}=\frac{x^2-2y^2+z^2}{4-18+16}=\frac{8}{2}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\\z^2=64\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\\z=\pm8\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)\in\left\{\left(-4,-6,-8\right),\left(4,6,8\right)\right\}\)
a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))
=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)
Từ : x-y-z = 0
=>x – z = y; y – x = – z và y + z = x
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)
\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{1}{3}x=-2t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{x}{-2}=\dfrac{t}{\dfrac{1}{3}}\end{matrix}\right.\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{-\dfrac{1}{3}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{-\dfrac{1}{3}}=\dfrac{x+y+z-2t}{2+3+4-2\cdot\dfrac{-1}{3}}=\dfrac{4}{\dfrac{29}{3}}=\dfrac{12}{29}\)
Do đó: x=24/29; y=36/29; z=48/29; t=-4/29
\(\dfrac{x}{2}+\dfrac{y}{3}-z+t=\dfrac{12}{29}+\dfrac{12}{29}-\dfrac{48}{29}+\dfrac{-4}{29}=-\dfrac{28}{29}\)