\(\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\le3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

Nguyễn Việt Lâm

NV
30 tháng 12 2020

Đề sai, nếu \(x+y+z=3\) thì vế phải là \(3\sqrt{3}\)

Muốn vế phải là 3 thì \(x+y+z=1\)

\(VT\le\sqrt{3\left(x+2y+y+2z+z+2x\right)}=\sqrt{9\left(x+y+z\right)}=3\sqrt{3}\)

NV
14 tháng 5 2020

\(\sqrt{x^2+y^2+y^2}\ge\sqrt{3\sqrt[3]{x^2y^4}}=\sqrt{3}.\sqrt[3]{xy^2}\)

\(\Rightarrow VT\ge\sqrt{3}\left(\frac{\sqrt[3]{xy^2}}{z}+\frac{\sqrt[3]{yz^2}}{x}+\frac{\sqrt[3]{zx^2}}{y}\right)\)

\(\Rightarrow VT\ge3\sqrt{3}\sqrt[3]{\frac{\sqrt[3]{xy^2.yz^2.zx^2}}{xyz}}=3\sqrt{3}.\sqrt[3]{\frac{\sqrt[3]{x^3y^3z^3}}{xyz}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z\)

14 tháng 5 2020

@Nguyễn Việt Lâm

NV
14 tháng 5 2020

\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)

\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)

\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)

\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

11 tháng 7 2020

Đặt \(\left(a,b,c\right)=\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\).

Xét 4 số m, n, p, q. Ta sẽ chứng minh \(\left(m+n+p+q\right)^2\le4\left(m^2+n^2+p^2+q^2\right)\) (*)

Thật vậy:

(*) \(\Leftrightarrow2\left(mn+np+pq+qm+mp+nq\right)\le3\left(m^2+n^2+p^2+q^2\right)\)

\(\Leftrightarrow\left(m-n\right)^2+\left(n-p\right)^2+\left(p-q\right)^2+\left(q-m\right)^2+\left(m-p\right)^2+\left(n-q\right)^2\ge0\) (luôn đúng).

Từ đó: \(\left(\sqrt{x}+\sqrt{y}+2\sqrt{z}\right)^2=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{z}\right)^2\le4\left(x+y+z+z\right)=4\left(x+y+2z\right)\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}+2\sqrt{z}\le2\sqrt{x+y+2z}\)

\(\Leftrightarrow\sqrt{\frac{xy}{x+y+2z}}=\frac{\sqrt{xy}}{\sqrt{x+y+2z}}\le\frac{2\sqrt{x}\sqrt{y}}{\sqrt{x}+\sqrt{y}+2\sqrt{z}}=\frac{2ab}{a+b+2c}\le\frac{1}{2}ab\frac{4}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{2}ab\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự, ta có:

\(\sum\sqrt{\frac{xy}{x+y+2z}}\le\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{2}\sum\left(\frac{ab}{a+c}+\frac{bc}{c+a}\right)=\frac{1}{2}\sum a=\frac{1}{2}\)

9 tháng 3 2016

Ta chứng minh điều sau: Nếu \(a,b>0\) thì \(2a^2+ab+2b^2\ge\frac{5\left(a+b\right)^2}{4}.\)  Thực vậy bất đẳng thức cần chứng minh tương đương với
 \(8a^2+4ab+8b^2\ge5\left(a^2+2ab+b^2\right)\Leftrightarrow3\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0.\)

Quay lại bài toán, áp dụng nhận xét ta được

\(\sqrt{2x^2+xy+2y^2}\ge\frac{5\left(x+y\right)}{2},\sqrt{2y^2+yz+2z^2}\ge\frac{5\left(y+z\right)}{2},\sqrt{2z^2+zx+2x^2}\ge\frac{5\left(z+x\right)}{2}.\)

Cộng các bất đẳng thức lại ta sẽ được \(VT\ge\frac{5}{2}>\sqrt{5}.\)

8 tháng 3 2016

mn ơi ko OLM ko có khóa học lớp 9 àh

30 tháng 4 2020

\(ĐKXĐ:x,y,z\ge1\left(x,y,z\inℤ\right)\)

Ta có: \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4.\frac{2x+y}{2}.\frac{3y}{2}=3y\left(2x+y\right)\)

\(\Rightarrow\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự: \(\frac{2y+z}{y\left(y+2x\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\);\(\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\)

\(\Rightarrow A\le\frac{1}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(*)

Ta có: \(\sqrt{2x-1}=\sqrt{\left(2x-1\right).1}\le\frac{2x-1+1}{2}=x\)(BĐT Cô - si)

\(\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự: \(\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\);\(\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(**)

Từ (*) và (**) suy ra \(A=\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\le3\)

Đẳng thức xảy ra khi x = y = z = 1

1 tháng 5 2020

Từ đẳng thức đã cho suy ra \(x>\frac{1}{2};y>\frac{1}{2};z>\frac{1}{2}\)

Áp dụng\(\left(a+b\right)^2\ge4ab\)ta có \(\left(x+2y\right)^2=\left(\frac{2x+y}{2}+\frac{3y}{2}\right)^2\ge4\cdot\frac{2x+y}{2}\cdot\frac{3y}{2}\)

\(\Rightarrow\left(x+2y\right)^2\ge3y\left(2x+y\right)\)(Dấu "=" xảy ra <=> x=y)

=> \(\frac{2x+y}{x+2y}\le\frac{x+2y}{3y}\Rightarrow\frac{2x+y}{x\left(x+2y\right)}\le\frac{1}{3}\left(\frac{2}{x}+\frac{1}{y}\right)\)

Tương tự \(\hept{\begin{cases}\frac{2y+z}{y\left(y+2z\right)}\le\frac{1}{3}\left(\frac{2}{y}+\frac{1}{z}\right)\\\frac{2z+x}{z\left(z+2x\right)}\le\frac{1}{3}\left(\frac{2}{z}+\frac{1}{x}\right)\end{cases}}\)

=> \(A\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)(Dấu "=" xảy ra <=> x=y=z)

Ta có \(\sqrt{\left(2x-1\right)\cdot1}\le\frac{\left(2x-1\right)+1}{2}\Rightarrow\sqrt{2x-1}\le x\Rightarrow\frac{1}{x}\le\frac{1}{\sqrt{2x-1}}\)

Tương tự \(\hept{\begin{cases}\frac{1}{y}\le\frac{1}{\sqrt{2y-1}}\\\frac{1}{z}\le\frac{1}{\sqrt{2z-1}}\end{cases}}\)

Do đó \(A\le\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\)(dấu "=" xảy ra <=> x=y=z=1)

Vậy MaxA=3 đạt được khi x=y=z=1

3 tháng 9 2018

hình như thiếu cái gì đó

Đề bài đủ rồi bạn nhé.

căn 5 chứ không phải 5