Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)
Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)
=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)
=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)
\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)
Từ (1) và (2) suy ra
\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)
=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)
à thêm cái này nữa. Sorry viết thiếu
Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)
lúc đó \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)
a) A = ( 6x + 7)( 2x - 3) - ( 4x + 1)( 3x - \(\dfrac{7}{4}\))
A = 12x2 - 18x + 14x - 21 - ( 12x2 - 7x + 3x - \(\dfrac{7}{4}\))
A = \(\dfrac{-77}{4}\)
Vậy biểu thức trên ko phụ thuộc vào biến
b) x2 - 2y2 = xy
⇔ x2 - xy - 2y2 = 0
⇔ x2 + xy - 2xy - 2y2 = 0
⇔ x( x + y) - 2y( x + y) = 0
⇔ ( x - 2y )( x + y ) = 0
Do : x + y # 0
⇒ x - 2y = 0
⇔ x = 2y
Ta có : P = \(\dfrac{x-y}{x+y}\) ( x + y # 0 ; y # 0)
P = \(\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
KL....
Do \(y(y+x)\ne0 \) nên \(y\ne0;y\ne-x\)
Đặt \(t=\dfrac{x}{y},t\ne-1\)
Ta có: \(x^2-xy=2y^2 \Rightarrow(\dfrac{x}{y})^2-\dfrac{x}{y}=2\)
\(\Rightarrow t^2-t-2=0 \Leftrightarrow t=2 \ \ vì \ \ t\ne-1\)
\(\Rightarrow A=\dfrac{1007\dfrac{x}{y}-1}{\dfrac{x}{y}+2012}=\dfrac{2013}{2014}\)
cách khác
\(\left\{{}\begin{matrix}x^2-xy=2y^2\left(1\right)\\y\left(x+y\right)\ne0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(x^2-y^2\right)-\left(xy+y^2\right)=\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=\left(x+y\right)\left(x-2y\right)=0\)
Từ (2) =>\(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
\(A=\dfrac{1007x-y}{x+2012y}=\dfrac{1007.2y-y}{2y+2012y}=\dfrac{\left(1007.2-1\right)y}{\left(2+2013\right)y}=\dfrac{2013y}{2014y}\)
Từ (2)=> \(y\ne0\) \(\Rightarrow A=\dfrac{2013}{2014}\)