\(\frac{1}{x}+\frac{1}{y}-\frac{1}{z...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)

\(\Leftrightarrow\)\(x+y=x+y-2z+2\sqrt{\left(x-z\right)\left(y-z\right)}\)

\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)

Theo giả thiết, ta có: 

6 tháng 2 2020

theo giả thiết, ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}-\frac{1}{x}=\frac{1}{y}\)\(\Rightarrow\frac{x-z}{zx}=\frac{1}{y}\Rightarrow x-z=\frac{zx}{y}\)

Tương tự, ta có: \(y-z=\frac{zy}{x}\)

Do đó: \(2\sqrt{\left(x-z\right)\left(y-z\right)}=2\sqrt{\frac{zx}{y}.\frac{zy}{x}}=2z\) (1)

ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)

\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)(2)

Thay (2) vào (1) ta thấy (2) luôn đúng

Suy ra ĐPCM

28 tháng 4 2020

Đặt \(\frac{1}{1+x}=a\);\(\frac{1}{1+y}=b\);\(\frac{1}{1+y}=c\). Lúc đó a + b + c = 1

Ta có: \(a=\frac{1}{1+x}\Rightarrow x=\frac{1-a}{a}=\frac{\left(a+b+c\right)-a}{a}=\frac{b+c}{a}\)(Do a + b + c = 1)

Tương tự ta có: \(y=\frac{c+a}{b};z=\frac{a+b}{c}\)

\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\Leftrightarrow\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{xy}}\le\frac{3}{2}\)

Ta đi chứng minh \(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)\(\le\frac{3}{2}\)

\(VT\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}\right)\)

\(=\frac{1}{2}.3=\frac{3}{2}\)*đúng*

Vậy \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)

Đẳng thức xảy ra khi x = y = z = 2

29 tháng 7 2020

ĐK: \(x+y;y+z;z+x\ge0\).

Bình phương hai vế của đẳng thức đã cho ta được:

\(x+y=z+x+y+z+2\sqrt{\left(z+x\right)\left(y+z\right)}\)

\(\Leftrightarrow z+\sqrt{\left(z+x\right)\left(y+z\right)}=0\)

\(\Leftrightarrow\sqrt{\left(z+x\right)\left(y+z\right)}=-z\) (1).

Đến đây ta có \(z\le0\).

Do đó \(\left(1\right)\Leftrightarrow\left(z+x\right)\left(y+z\right)=z^2\Leftrightarrow zx+yz+xy=0\).

Đến đây dễ có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\).

13 tháng 8 2016

Ta có x√(1-y2)<= (x+ 1 - y2)/2

y√(1-z2)<=  (y+1 - z2)/2

z√(1- x2)<= (z+ 1 - x2)/2

=>x√(1-y2) +y√(1-z2)z+√(1- x2)<=3/2

Đấu đẳng thức xảy ra khi: x2 = 1 - y2

y= 1-z2

z = 1- x2

Cộng vế theo vế ta được điều phải chứng minh

13 tháng 8 2016

Thanks nhiều

16 tháng 1 2020

\(VT\ge\frac{9}{\Sigma_{cyc}\sqrt{xy+x+y}}\ge\frac{9}{\sqrt{\left(1+1+1\right)\left(2x+2y+2z+xy+yz+zx\right)}}\ge\frac{9}{\sqrt{3\left[6+\frac{\left(x+y+z\right)^2}{3}\right]}}=\sqrt{3}\)

29 tháng 7 2019

Ta có \(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+z\right)\left(x+y\right)}\ge\sqrt{xy}+\sqrt{xz}\)(BĐT buniacoxki)

=>\(VT\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yx}+\sqrt{yz}}+\frac{z}{z+\sqrt{zx}+\sqrt{yz}}\)

=> \(VT\le\frac{\sqrt[]{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

9 tháng 12 2020

Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)