Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)
P=(x+y+1)(x^2+y^2)+4/(x+y)
>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)
x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8
minP=8
\(K=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)
\(\ge\frac{4}{\left(x+y\right)^2}+12-\frac{20\left(x+y\right)^2}{4}=11\)
Check xem có sai chỗ nào ko:v
Trời! Chứng minh vậy đọc ai hiểu được chời :)))
Vì \(\frac{1}{x^2+y^2}+\frac{1}{2xy}=\frac{1^2}{x^2+y^2}+\frac{1^2}{2xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)
\(\frac{3}{2xy}+24xy\ge2\sqrt{\frac{3}{2xy}.24xy}=12\)
Lại quên dấu bằng xảy ra kìa em.
"=" xảy ra <=> x=y=1/2
\(P\le\frac{x}{2\sqrt{x^4.y^2}}+\frac{y}{2\sqrt{x^2.y^4}}=\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)
Dấu "=" xảy ra khi x=y=1