Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
`Ta có : \(x=\sqrt[3]{4\sqrt{5}+4}-\sqrt[3]{4\sqrt{5}-4}\)
\(\Rightarrow x^3=8-3\sqrt[3]{\left(4\sqrt{5}\right)^2-4^2}.x\Leftrightarrow x^3+12x-8=0\Rightarrow x^3-12x-9=-1\)
Từ đó tính được P = (-1)2016 = 1
\(x^3=4\left(\sqrt{5}+1\right)-4\left(\sqrt{5}-1\right)-3\sqrt[3]{4\left(\sqrt{5}+1\right).4\left(\sqrt{5}-1\right)}.\left(\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\right)\)\(\Rightarrow x^3=8-12x\)
\(\Rightarrow x^3+12x-9=-1\)
\(\Rightarrow P=\left(-1\right)^{2015}=-1\)
bài 1:
a)\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\)
\(=\left(3-\sqrt{2}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(3-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)\(do2>\sqrt{3}\)
\(=6+3\sqrt{3}-2\sqrt{2}-\sqrt{6}\)
b) \(\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)do\sqrt{5}>\sqrt{2}\)
\(=\sqrt{15}-\sqrt{6}+5-\sqrt{10}\)
c)\(\left(2+\sqrt{5}\right)\sqrt{9-4\sqrt{5}}\)
\(=\left(2+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)do\sqrt{5}>2\)
\(=5-4\)
\(=1\left(hđt.3\right)\)
d)\(\left(\sqrt{6}+\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)do\sqrt{5}>\sqrt{3}\)
\(=5-3\)
\(=2\)
e)\(\sqrt{2}\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)
\(=\sqrt{2}\left(2\sqrt{2}-4\sqrt{2}+9\sqrt{2}\right)\)
\(=2\left(2-4+9\right)\)
\(=2.7=14\)
f)\(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)
\(=2-\sqrt{6-2\sqrt{5}}\)
\(=2-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2-\left(\sqrt{5}-1\right)\)
\(=2-\sqrt{5}+1\)
\(=3-\sqrt{5}\)
g)\(\sqrt{3}-\sqrt{2}\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)\)
\(=\sqrt{3}-\sqrt{6}-2\)
h) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)
\(=\left(2-\sqrt{6+2\sqrt{5}}\right)+2\sqrt{5}\)
\(=\left(2-\sqrt{\left(\sqrt{5}+1\right)^2}\right)+2\sqrt{5}\)
\(=2-\left(\sqrt{5}+1\right)+2\sqrt{5}\left(do\sqrt{5}>1\right)\)
\(=2-\sqrt{5}-1+2\sqrt{5}\)
\(=1-\sqrt{5}\)
bài 2)
a) \(\sqrt{4x^2-4x+1}=5\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)
\(\Leftrightarrow2x-1=5\)hoặc \(\Leftrightarrow2x-1=-5\)
\(\Leftrightarrow x=3\)hoặc \(\Leftrightarrow x=-2\)
Vậy x = 3 hoặc x = -2
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
\(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)
\(\Leftrightarrow x^3=4\left(\sqrt{5}+1\right)-4\left(\sqrt{5}-1\right)-3.\sqrt[3]{4\left(\sqrt{5}+1\right).4\left(\sqrt{5}-1\right)}x\)
\(\Leftrightarrow x^3=8-3.\sqrt[3]{4^2.\left(5-1\right)}x\)
\(\Leftrightarrow x^3=8-3.4x=8-12x\)
\(\Rightarrow M=\left(x^3+12x-9\right)^{2014}=\left(8-12x+12x-9\right)^{2014}=\left(-1\right)^{2014}=1\)
Câu này không gâp thì làm :D
\(=4\left(\sqrt{5}+1\right)-4\left(\sqrt{5}-1\right)-3\sqrt[3]{4\left(\sqrt{5}+1\right)}\cdot\sqrt[3]{4\left(\sqrt{5}-1\right)}\left(\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\right)\)
\(=8-3\cdot\sqrt[3]{4\cdot4\cdot\left(5-1\right)}\cdot\left(\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\right)\)
\(=8-12\cdot\left(\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\right)\)
Vậy:
\(E=x^3+12x-8=8-12\cdot\left(\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\right)\)
\(+12\cdot\left(\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\right)-8\)
\(E=0\)