Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 + 3xy + 2y^2 = 0
=> x^2 + xy + 2xy + 2y^2 = 0
=> x(x+y) + 2y ( x+ y ) = 0 =
=> ( x+ 2y)( x + y ) = 0
=> x = -2y hoặc x = -y
(+) x = -2y thay vào ta có :
8y^2 + 6y + 5 = 0 giải ra y => x
(+) thay x = -y ta có :
2y^2 - 3y + 5 = 0 tương tự
1.
\(x^3+2=3\sqrt[3]{3x-2}\Leftrightarrow x^3+3x=\left(3x-2\right)+3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\)thì \(x^3+3x=a^3+3a\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left[\frac{1}{2}x^2+\frac{1}{2}a^2+\frac{1}{2}\left(x+a\right)^2+3\right]=0\)
\(\Leftrightarrow x=a\Leftrightarrow.......\)
2.
\(x^2+\sqrt{x+5}=5\)\(\Leftrightarrow x^2+x+\frac{1}{4}=x+5-\sqrt{x+5}+\frac{1}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\sqrt{x+5}-\frac{1}{2}\right)^2\)\(\Leftrightarrow..........\)
3. Các hệ đối xứng như vầy, chỉ cần trừ theo vế 2 phương trình của hệ cho nhau để rút ra nhân tử chung.
a.
\(pt\left(1\right)-pt\left(2\right)\Leftrightarrow x^3-y^3=3x+8y-\left(3y+8x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-xy+y^2\right)+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\frac{1}{2}x^2+\frac{1}{2}y^2+\frac{1}{2}\left(x+y\right)^2+5\right]=0\)
\(\Leftrightarrow x=y\text{ }\left(do\text{ }.....................................>0\right)\)
thay vào một trong hai phương trình ban đầu giải nốt
b.
\(pt\left(1\right)-pt\left(2\right)\Leftrightarrow2x+y-\left(2y+x\right)=\frac{3}{x^2}-\frac{3}{y^2}\)
\(\Leftrightarrow x-y+\frac{3}{x^2y^2}\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[1+\frac{3\left(x+y\right)}{x^2y^2}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\text{ (3)}\\1+\frac{3\left(x+y\right)}{x^2y^2}=0\text{ (4)}\end{cases}}\)
Ta cần CM (4) làm hệ vô nghiệm
Từ pt(1) ta có: \(\frac{3}{x^2}>0\Rightarrow2x+y>0\)
Tương tự với pt(2) \(\frac{3}{y^2}>0\Rightarrow x+2y>0\)
Cộng theo vế: \(2x+y+x+2y>0\Rightarrow3\left(x+y\right)>0\)
Vậy \(1+\frac{3\left(x+y\right)}{x^2y^2}>0\) hay (4) bị loại.
Vậy (3) vào một phương trình đã cho giải nốt.