\(\sqrt{2}\) ,DC=R
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

Ta có : Đường tròn tâm O cắt O, tại A và B .

=> OO, là đường trung trực của AB .

=> \(\left\{{}\begin{matrix}HA=HB=\frac{1}{2}AB\\AB\perp OO^,\end{matrix}\right.\)

=> \(\widehat{AO^,H}=\frac{1}{2}\widehat{AO^,B}=45^o\)

Mà tam giác AHO, vuông .

=> Tam giác AHO, vuông cân .

- Áp dụng định lý pi ta go vào tam giác AHO, có :

\(AO^,=\sqrt{AH^2+OH^{,2}}=\sqrt{2AH^2}=\sqrt{2\left(\frac{AB}{2}\right)^2}=\sqrt{\frac{AB^2}{2}}\)

- Áp dụng định lý pi ta go vào tam giác AHO, có :

\(O^,H=\sqrt{AO^{,2}-AH^2}=\sqrt{\frac{AB^2}{2}-\left(\frac{AB}{2}\right)^2}=\sqrt{\frac{AB^2}{4}}=\frac{AB}{2}\)

- Áp dụng định lý pi ta go vào tam giác AHO có :

\(OH=\sqrt{AO^2-AH^2}\)

Mà tam giác OAB là tam giác đều ( \(\left\{{}\begin{matrix}OA=OB=R\\\widehat{AOB}=60^o\end{matrix}\right.\) )

=> \(AO=AB\)

=> \(OH=\sqrt{AB^2-\left(\frac{AB}{2}\right)^2}=\sqrt{\frac{3AB^2}{4}}=\frac{AB\sqrt{3}}{2}\)

Ta có : \(OO^,=OH+O^,H=\frac{AB}{2}+\frac{AB\sqrt{3}}{2}=2+2\sqrt{3}\)

=> AB = 4 ( cm )

=> \(AH=BH=\frac{1}{2}AB=2\left(cm\right)\)

- Áp dụng tỉ số lượng giác vào :

\(\left\{{}\begin{matrix}\Delta AHO^,\perp H:SinAO^,H=Sin45=\frac{AH}{AO^,}=\frac{2}{AO^,}\\\Delta AHO\perp H:SinAOH=Sin30=\frac{AH}{AO}=\frac{2}{AO}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}AO^,=2\sqrt{2}=r\\AO=4=R\end{matrix}\right.\) ( cm )

Câu 1: Tính \(A=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)\(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)Câu 2: Giải phương trình và hệ phương trình saua) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)b) \(\hept{\begin{cases}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{cases}}\)Câu 3: Cạnh huyền của một tam giác vuông bằng 10cm. Hai cạnh góc vuông hơn kém nhau 2cm. Tìm các cạnh góc vuông...
Đọc tiếp

Câu 1: Tính 

\(A=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)

\(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

Câu 2: Giải phương trình và hệ phương trình sau

a) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)

b) \(\hept{\begin{cases}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{cases}}\)

Câu 3: Cạnh huyền của một tam giác vuông bằng 10cm. Hai cạnh góc vuông hơn kém nhau 2cm. Tìm các cạnh góc vuông của tam giác đó.

Câu 4: Từ một điểm A ở ngoài đường tròn (O; R) vẽ tiếp tuyến AB và cát tuyến AMN của đường tròn (M nằm giữa A và N; B thuộc cung lớn MN). Gọi C là điểm chính giữa cung nhỏ MN. Đường thẳng MN lần lượt cắt OC và BC tại I và E.

a) CMR: Tứ giác AIOB là tứ giác nội tiếp.

b) CMR: \(\Delta ABE\)cân.

c) Biết AB = 2R. Tính chu vi của nửa đường tròn ngoại tiếp tứ giác AIOB theo R.

d) Kẻ tiếp tuyến thứ hai AL của (O). Gọi K là giao điểm của LB và AO. CMR: AM.AN = AL2; AK.AO = AM.AN

Câu 5: Cho x, y là hai số thỏa mãn x + 2y = 3. Tìm giá trị nhỏ nhất của: E = x2 + 2y2 

Câu 6: Tìm các cặp nghiệm nguyên trong các trường hợp sau

a) x2 - xy + y2 = 2x - 3y - 2

b) m2 + n2 = m + n + 8

Help me!!!

Thanks trc

3
11 tháng 8 2020

CÂU 1:

\(A=\sqrt[4]{\left(2\sqrt{6}+5\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)

\(A=\sqrt{2\sqrt{6}+5}+\sqrt{5-2\sqrt{6}}\)

\(A=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(A=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)

\(A=2\sqrt{3}\)

11 tháng 8 2020

CÂU 1:

\(B=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(B=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(B=1-a\)

Vậy \(B=1-a\)