K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

1) Có \(2\overrightarrow{EF}=\overrightarrow{ED}+\overrightarrow{EC}\)

Lại có : \(\left\{{}\begin{matrix}\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{ED}\\\overrightarrow{BC}=\overrightarrow{BE}+\overrightarrow{EC}\end{matrix}\right.\rightarrow\overrightarrow{AD}+\overrightarrow{BC}=\left(\overrightarrow{AE}+\overrightarrow{BE}\right)+\overrightarrow{ED}+\overrightarrow{EC}=\overrightarrow{0}+\overrightarrow{ED}+\overrightarrow{EC}=\overrightarrow{ED}+\overrightarrow{EC}\) Do đó : \(2\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{BC}\left(=\overrightarrow{ED}+\overrightarrow{EC}\right)\)

2) Có : \(\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OE}\left(1\right)\\\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{OF}=-2\overrightarrow{OE}\left(2\right)\end{matrix}\right.\)

(1) + (2) => \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{OE}+2\overrightarrow{OF}=2\overrightarrow{OE}-2\overrightarrow{OE}=\overrightarrow{0}\)

3) \(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)+\overrightarrow{AC}=2\overrightarrow{AC}=4\overrightarrow{AO}\)

4) Ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\left(\overrightarrow{MO}+\overrightarrow{OA}\right)+\left(\overrightarrow{MO}+\overrightarrow{OB}\right)+\left(\overrightarrow{MO}+\overrightarrow{OC}\right)+\left(\overrightarrow{MO}+\overrightarrow{OD}\right)=4\overrightarrow{MO}+\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right)=4\overrightarrow{MO}+\overrightarrow{0}=4\overrightarrow{MO}\)

4 tháng 11 2018

MA+ MB+ 2MC+ 2MD=0

MA+ MA+ AB+ 2MA+ 2AC+ 2MA+ 2AD=0

6MA+ AB+ 2AC+ 2AD=0

6MA+ 2AI+ 4AJ=0

6MA= 2IA+ 4JA

MA= 1/3 IA+ 2/3 JA

NV
20 tháng 9 2020

a/ \(\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AE}\\\overrightarrow{AM}+\overrightarrow{AN}=2\overrightarrow{AE}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AM}+\overrightarrow{AN}\)

b/ \(2\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=2\overrightarrow{IA}+2\overrightarrow{IE}=2\left(\overrightarrow{IA}+\overrightarrow{IE}\right)=2\overrightarrow{0}=\overrightarrow{0}\)

c/ \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=2\left(\overrightarrow{OI}+\overrightarrow{IA}\right)+\overrightarrow{OI}+\overrightarrow{IB}+\overrightarrow{OI}+\overrightarrow{IC}\)

\(=\left(2\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right)+4\overrightarrow{OI}=\overrightarrow{0}+4\overrightarrow{OI}=4\overrightarrow{OI}\)

5 tháng 12 2019

Thế cũng ko tra lời được toàm mấy đứa cù lần

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

\(\begin{array}{l}\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = \left( {\overrightarrow {MG}  + \overrightarrow {GE}  + \overrightarrow {EA} } \right) + \left( {\overrightarrow {MG}  + \overrightarrow {GE}  + \overrightarrow {EB} } \right)\\ + \left( {\overrightarrow {MG}  + \overrightarrow {GF}  + \overrightarrow {FC} } \right) + \left( {\overrightarrow {MG}  + \overrightarrow {GF}  + \overrightarrow {FD} } \right)\end{array}\)

\( = \left( {\overrightarrow {MG}  + \overrightarrow {MG}  + \overrightarrow {MG} \overrightarrow { + MG} } \right) + 2\left( {\overrightarrow {GE}  + \overrightarrow {GF} } \right) \\+ \left( {\overrightarrow {EA}  + \overrightarrow {EB} } \right) + \left( {\overrightarrow {FC}  + \overrightarrow {FD} } \right)\)

\( = 4\overrightarrow {MG}  + 2.\overrightarrow 0  + \overrightarrow 0  + \overrightarrow 0  = 4\overrightarrow {MG} \)  (đpcm)

3 tháng 9 2019

Gọi E, F lần lượt là trung điểm của AM, MB; G, H lần lượt là trung điểm của DN, NC. 

Ta có P,Q lần lượt là trung điểm của EG, FH. Khi đó

Đáp án C

30 tháng 3 2019

*Xét  tam giác ABC có M; N  là trung điểm của AB, BC nên MN là đường trung bình của tam giác.

⇒ M N / / A C ;     M N = 1 2 A C   ( 1 )

* Xét  tam giác ADC có P; Q  là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.

⇒ P Q / / A C ;     P Q = 1 2 A C   ( 2 )

* Từ (1) (2)  suy  ra  PQ// MN;  PQ = MN.  Do đó, tứ giác MNPQ là hình bình hành.

* Mà O là giao điểm của hình bình hành MNPQ nên O là trung điểm MP

* Xét tam giác ABC có MI là đường trung bình nên:  M I / / B C ;    M I = 1 2 ​ B C   ( 3 )

* Xét tam giác BCD có PJ là đường trung bình của các tam giác nên:  P J / / B C ;    P J = 1 2 ​ B C   ( 4 )

Từ (3) ( 4) suy ra ;  tứ giác  MIPJ là hình bình hành. Mà O là trung điểm MP nên  điểm O là trung điểm của đoạn thẳng IJ. Từ đó ta có  O I →   =   - O J →

Đáp án D

b: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}\)

\(=2\overrightarrow{GE}+2\cdot\overrightarrow{GF}\)

\(=\overrightarrow{0}\)

30 tháng 7 2019

+) vecto AC + vecto BD = vecto AD + vecto DC + vecto BC + vecto CD

= vecto AD + vecto BC (1)

+) vecto MN = \(\frac{1}{2}\left(\overrightarrow{MD}+\overrightarrow{MC}\right)\)

\(\Leftrightarrow2\overrightarrow{MN}=\overrightarrow{MD}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{MB}+\overrightarrow{BC} \)\(=\overrightarrow{AD}+\overrightarrow{BC}\)\(\left(2\right)\)

Từ (1),(2) => đpcm

30 tháng 7 2019

undefined