Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)
Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.
Suy ra AH \(\perp\) BC
Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.
Suy ra góc HFC + góc HDC = 180o
Suy ra HFCD là tứ giác nội tiếp
\(\Rightarrow\) góc HDC = góc HCD.
b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH
Suy ra MD = ME
Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD
Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD
Theo ý a) ta có góc HFD = góc HCD = góc ECD
\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD
Suy ra tứ giác MFOD là tứ giác nội tiếp
\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO
Chứng minh tương tự ta có MEFO là tứ giác nội tiếp
Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.
a) Gọi chiều dài là a, chiều rộng là b.
Nửa chu vi hình chữ nhật là : \(\dfrac{94,4}{2}=47,2\left(m\right)\)
Ta có hệ pt : \(\left\{{}\begin{matrix}a+b=47,2\\a\cdot b=494,55\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=47,2-b\\\left(47,2-b\right)\cdot b=494,55\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a=47,2-b\\47,2b-b^2=494,55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=47,2-15,7=31,5\\b=15,7\left(giải-HPT-bậc-2\right)\end{matrix}\right.\)
Vậy chiều dài là 31,5 mét, chiều rộng 15,7 mét.
b) Vẫn gọi chiều dài là a, chiều rộng là b.
Có hpt : \(\left\{{}\begin{matrix}a-b=12,1\\a\cdot b=1089\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=12,1+b\\\left(12,1+b\right)\cdot b=1089\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=12,1+b\\12,1b+b^2=1089\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=12,1+27,5=39,6\\b=27,5\left(Giải-HPT-Bậc-2\right)\end{matrix}\right.\)
Vậy chiều dài là 39,6 mét, chiều rộng là 27,5 mét.